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4 Chapter 1. An Introduction to Linear Programming

1.1 The Basic Linear Programming Problem Formulation

1. Express each LP below in matrix inequality form. Then solve the LP
using Maple provided it is feasible and bounded.

(a)

maximize z = 6x1 + 4x2

subject to

2x1 + 3x2 ≤ 9

x1 ≥ 4

x2 ≤ 6

x1, x2 ≥ 0,

The second constraint may be rewritten as −x1 ≤ −4 so that matrix
inequality form of the LP is given by

maximize z = c · x (1.1)

subject to

Ax ≤ b

x ≥ 0,

where A =




2 3
−1 0
0 1


, c =

[
6 4

]
, b =




9
−4
6


, and x =

[
x1

x2

]
.

The solution is given by x =

[
4.5
0

]
, with z = 27.

(b)

maximize z = 3x1 + 2x2

subject to

x1 ≤ 4

x1 + 3x2 ≤ 15

2x1 + x2 = 10

x1, x2 ≥ 0.

The third constraint can be replaced by the two constraints, 2x1 +

x2 ≤ 10 and −2x1 − x2 ≤ −10. Thus, the matrix inequality form
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of the LP is (1.1), with A =




1 0
1 3
2 1
−2 −1



, c =

[
3 2

]
, b =




4
15
10
−10



, and

x =

[
x1

x2

]
.

The solution is given by x =

[
3
4

]
, with z = 17.

(c)

maximize z = −x1 + 4x2

subject to

−x1 + x2 ≤ 1

x1 + ≤ 3

x1 + x2 ≥ 5

x1, x2 ≥ 0.

The third constraint is identical to −x1 − x2 ≤ −5. The matrix in-

equality form of the LP is (1.1), with A =



−1 1
1 0
−1 −1


, c =

[
−1 4

]
,

b =




1
3
−5


, and x =

[
x1

x2

]
.

The solution is x =

[
3
4

]
, with z = 13.

(d)

minimize z = −x1 + 4x2

subject to

x1 + 3x2 ≥ 5

x1 + x2 ≥ 4

x1 − x2 ≤ 2

x1, x2 ≥ 0.

To express the LP in matrix inequality form with the goal of maxi-
mization, we set

c = −
[
−1 4

]
=

[
1 −4

]
.

The first two constraints may be rewritten as −x1 − 3x2 ≤ −5 and
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−x1 − x2 ≤ −4. The matrix inequality form of the LP becomes (1.1),

with A =



−1 −3
−1 −1
1 −1


, c =

[
1 −4

]
, b =



−5
−4
2


, and x =

[
x1

x2

]
.

The solution is given by x =

[
3
1

]
, with z = −1.

(e)

maximize z = 2x1 − x2

subject to

x1 + 3x2 ≥ 8

x1 + x2 ≥ 4

x1 − x2 ≤ 2

x1, x2 ≥ 0.

The first and second constraints are identical to −x1 − 3x2 ≤ −8

and −x1 − x2 ≤ −4, respectively. Thus, A =



−1 −3
−1 −1
1 −1


, c =

[
2 −1

]
,

b =



−8
−4
2


, and x =

[
x1

x2

]
.

The LP is unbounded.

(f)

minimize z = 2x1 + 3x2

subject to

3x1 + x2 ≥ 1

x1 + x2 ≤ 6

x2 ≥ 0.

Define x1 = x1,+ − x1,−, where x1,+ and x1,− are nonnegative. Then,
as a maximization problem, the LP may be rewritten in terms of
three decision variables as

maximize z = −2(x1,+ − x1,−) − 3x2

subject to

−3(x1,+ − x1,−) − x2 ≤ −1

(x1,+ − x1,−) + x2 ≤ 6

x1,+, x1,−, x2 ≥ 0.
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The matrix inequality form of the LP becomes (1.1), with A =
[
−3 3 −1
1 −1 1

]
, c =

[
−2 2 −3

]
, b =

[
−1
6

]
, and x =



x1,+

x1,−
x2


.

The solution is given by x1,+ =
1

3
and x1,− = x2 = 0, with z = −2

3
.

2. The LP is given by

minimize z = x1 + 4x2

subject to

x1 + 2x2 ≤ 5

|x1 − x2| ≤ 2

x1, x2 ≥ 0.

The constraint involving the absolute value is identical to −2 ≤ x1−x2 ≤
2, which may be written as the two constraints, x1−x2 ≤ 2 and−x1+x2 ≤

2. The matrix inequality form of the LP is (1.1) with A =




1 2
1 −1
−1 1


,

c =
[
−1 −4

]
, b =



5
2
2


, and x =

[
x1

x2

]
.

The solution is given by x =

[
0
0

]
, with z = 0.

3. If x1 and x2 denote the number of chairs and number of tables, respec-
tively produced by the company, then z = 5x1+7x2 denotes the revenue,
which we seek to maximize. The number of square blocks needed to
produce x1 chairs is 2x1, and the number of square blocks needed to pro-
duce x2 tables is 2x2. Since six square blocks are available, we have the
constraint, 2x1 + 2x2 ≤ 6. Similar reasoning, applied to the rectangular
blocks, leads to the constraint x1 + 2x2 ≤ 8. Along with sign conditions,
these results yield the LP

maximize z = 5x1 + 7x2

subject to

2x1 + 2x2 ≤ 6

x1 + 2x2 ≤ 8

x1, x2 ≥ 0.

.
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For the matrix inequality form, A =

[
2 2
1 2

]
, c =

[
5 7

]
, b =

[
6
8

]
, and

x =

[
x1

x2

]
.

The solution is given by x =

[
0
3

]
, with z = 21.

4. (a) If x1 and x2 denote the number of grams of grass and number of
grams of forb, respectively, consumed by the vole on a given day,
then the total foraging time is given by z = 45.55x1+ 21.87x2. Since
the coefficients in this sum have units of minutes per gram, the
units of z are minutes.

The products 1.64x1 and 2.67x2 represent the amount of digestive
capacity corresponding to eating x1 grams of grass and x2 grams
of forb, respectively. The total digestive capacity is 31.2 gm-wet,
which yields the constraint 1.64x1 + 2.67x2 ≤ 31.2. Observe that
the units of the variables, x1 and x2, are gm-dry. Each coefficient
in this inequality has units of gm-wet per gm-dry, so the sum
1.64x1 + 2.67x2 has the desired units of gm-wet.

Similar reasoning focusing on energy requirements, leads to the
constraint 2.11x1 + 2.3x2 ≥ 13.9. Along with sign conditions, we
arrive at

minimize z = 45.55x1 + 21.87x2

subject to

1.64x1 + 2.67x2 ≤ 31.2

2.11x1 + 2.3x2 ≥ 13.9

x1, x2 ≥ 0.

(b) The solution, obtained using Maple’s LPSolve command, is given
by x1 = 0 grams of grass and x2 ≈ 6.04 grams of forb. The total
time spent foraging is z ≈ 132.17 minutes.

Solutions to Waypoints

Waypoint 1.1.1. There are of course many possible combinations. Table 1.1
summarizes the outcomes for four choices.

The fourth combination requires 35 gallons of stock B, so it does not satisfy the
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TABLE 1.1: Production combinations (in gallons)

Premium Reg. Unleaded Profit ($)
5 5 3.5
5 7 4.1
7 5 4.3
7 7 4.9

listed constraints. Of the three that do, the combination of 7 gallons premium
and 5 gallons regular unleaded results in the greatest profit.
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1.2 Linear Programming: A Graphical Perspective in R2

1. (a)

Maximize z = 6x1 + 4x2

subject to

2x1 + 3x2 ≤ 9

x1 ≥ 4

x2 ≤ 6

x1, x2 ≥ 0,

The feasible region is shown in Figure 2.2. The solution is given by

x =

[
4.5
0

]
, with z = 27.

x1

x2

z = 23

z = 25

z = 27

FIGURE 1.1: Feasible region with contours z = 23, z = 25 and z = 27.
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(b)

maximize z = 3x1 + 2x2

subject to

x1 ≤ 4

x1 + 3x2 ≤ 15

2x1 + x2 = 10

x1, x2 ≥ 0.

The feasible region is the line segment shown in Figure 1.2. The

solution is given by x =

[
3
4

]
, with z = 17.

x1

x2

z = 13

z = 15
z = 17

FIGURE 1.2: Feasible region with contours z = 13, z = 15 and z = 17.
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(c)

minimize z = −x1 + 4x2

subject to

x1 + 3x2 ≥ 5

x1 + x2 ≥ 4

x1 − x2 ≤ 2

x1, x2 ≥ 0.

The feasible region is shown in Figure 1.3. The solution is given by

x =

[
3
1

]
, with z = 1.

x1

x2

z = 5

z = 3

z = 1

FIGURE 1.3: Feasible region with contours z = 5, z = 3 and z = 1.

(d)

maximize z = 2x1 + 6x2

subject to

x1 + 3x2 ≤ 6

x1 + 2x2 ≥ 5

x1, x2 ≥ 0.
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The feasible region is shown in Figure 1.4. The LP has alternative

optimal solutions that fall on the segment connecting x =

[
3
1

]
to

x =

[
6
0

]
. Each such solution has an objective value of z = 12, and

the parametric representation of the segment is given by

x =

[
3t + 6(1 − t)
t + 0(1 − t)

]

=

[
6 − 3t

t

]
,

where 0 ≤ t ≤ 1.

x1

x2

z = 8

z = 10

z = 12

FIGURE 1.4: Feasible region with contours z = 8, z = 10 and z = 12.
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(e)

minimize z = 2x1 + 3x2

subject to

3x1 + x2 ≥ 1

x1 + x2 ≤ 6

x2 ≥ 0.

The feasible region is shown in Figure 1.5. The solution is given by

x =

[
1/3
0

]
, with z =

2

3
.

x1

x2

z =
4

3

z = 1

z =
2

3

FIGURE 1.5: Feasible region with contours z =
4

3
, z = 1 and z =

2

3
.

2. The Foraging Herbivore Model), Exercise 4, from Section 1.1 is given by

minimize z = 45.55x1 + 21.87x2

subject to

1.64x1 + 2.67x2 ≤ 31.2

2.11x1 + 2.3x2 ≥ 13.9

x1, x2 ≥ 0,
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whose feasible region is shown in Figure 1.6. The solution is given by

x ≈
[

0
6.043

]
, with z ≈ 132.171.

x1

x2

z = 300

z = 200

z = 132.171

FIGURE 1.6: Feasible region with contours z = 300, z = 200 and z = 132.171.

3. (a) The feasible region, along with the contours z = 50, z = 100, and
z = 150, is shown in Figure 1.7

(b) If M is an arbitrarily large positive real number, then the set of
points falling on the contour z = M satisfies 2x1 − x2 = M, or,
equivalently, x2 = 2x1 − M. However, as Figure 1.7 indicates, to
use the portion of this line that falls within the feasible region, we
must have x1−x2 ≤ 2. Combining this inequality with 2x1−x2 =M
yields x1 ≥M−2. Thus, the portion of the contour z =M belonging
to the feasible region consists of the ray,

{(x1, x2) | x1 ≥M − 2 and x2 = 2x1 −M} .

(c) Fix M and consider the starting point on the ray from (b). Then
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x1

x2

z = 50 z = 100 z = 150

FIGURE 1.7: Feasible region with contours z = 50, z = 100 and z = 150.

x1 =M− 2 and x2 = 2x1 −M =M − 4, in which case all constraints
and sign conditions are satisfied if M is large enough. (Actually,
M ≥ 5 suffices.) Since M can be made as large as we like, the LP is
unbounded.

4. Suppose f is a linear function of x1 and x2, and consider the LP given
by

maximize z = f (x1, x2) (1.2)

subject to

x1 ≥ 1

x2 ≤ 1

x1, x2 ≥ 0,

(a) The feasible region is shown in Figure 1.8

(b) If f (x1, x2) = x2 − x1, then f (1, 1) = 0. For all other feasible points,

the objective value is negative. Hence, x =

[
1
1

]
is the unique optimal

solution.

(c) If f (x1, x2) = x1, then the LP is unbounded.



1.2. Linear Programming: A Graphical Perspective in R2 17

x1

x2

FIGURE 1.8: Feasible region for LP 1.2.

(d) If f (x1, x2) = x2, then the LP has alternative optimal solutions.

Solutions to Waypoints

Waypoint 1.2.1. The following Maple commands produce the desired feasible
region:

> restart:with(plots):

> constraints:=[x1<=8,2*x1+x2<=28,3*x1+2*x2<=32,x1>=0,x2>=0]:

> inequal(constraints,x1=0..10,x2=0..16,optionsfeasible=(color=grey),
optionsexcluded=(color=white),optionsclosed=(color=black),thickness=1);

Waypoint 1.2.2. The following commands produce the feasible region, upon
which are superimposed the contours, z = 20, z = 30, and z = 40.

> restart:with(plots):

> f:=(x1,x2)->4*x1+3*x2;

f := (x1, x2)→ 4x1 + 3x2

> constraints:=[x1<=8,2*x1+x2<=28,3*x1+2*x2<=32,x1>=0,x2>=0]:

> FeasibleRegion:=inequal(constraints,x1=0..10,x2=0..16,optionsfeasible=(color=grey),
optionsexcluded=(color=white),optionsclosed=(color=black),thickness=2):
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x1

x2

FIGURE 1.9: Feasible region and object contours z = 20, z = 30, and z = 40.

> ObjectiveContours:=contourplot(f(x1,x2),x1=0..10,x2=0..10,contours=[20,30,40],thicknes

> display(FeasibleRegion, ObjectiveContours);

The resulting graph is shown in Figure 1.9
Maple does not label the contours, but the contours must increase in value as
x1 and x2 increase. This fact, along with the graph, suggests that the solution
is given by x1 = 4, x2 = 10.
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1.3 Basic Feasible Solutions

1. For each of the following LPs, write the LP in the standard matrix form

maximize z = c · x
subject to

[A|Im]

[
x
s

]
= b

x, s ≥ 0.

Then determine all basic and basic feasible solutions, expressing each
solution in vector form. Label each solution next to its corresponding
point on the feasible region graph.

(a)

Maximize z = 6x1 + 4x2

subject to

2x1 + 3x2 ≤ 9

x1 ≥ 4

x2 ≤ 6

x1, x2 ≥ 0,

Note that this LP is the same as that from Exercise 1a of Section

1.1, where A =




2 3
−1 0
0 1


, c =

[
6 4

]
, b =




9
−4
6


, and x =

[
x1

x2

]
. Since

there are three constraints, s =



s1

s2

s3


.

In this case, the matrix equation,

[A|Im]

[
x
s

]
= b (1.3)

has at most

(
5
2

)
= 10 possible basic solutions. Each is obtained by

setting two of the five entries of

[
x
s

]
to zero and solving (1.3) for

the remaining three, provided the system is consistent. Of the ten
possible cases to consider, two lead to inconsistent systems. They
arise from setting x1 = s2 = 0 and from setting x2 = s3 = 0. The
eight remaining consistent systems yield the following results:
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i. x1 = 0, x2 = 0, s1 = 9, s2 = −4, s3 = 6 (basic, but not basic
feasible solution)

ii. x1 = 0, x2 = 3, s1 = 0, s2 = −4, s3 = 3 (basic, but not basic
feasible solution)

iii. x1 = 0, x2 = 6, s1 = −9, s2 = −4, s3 = 0 (basic, but not basic
feasible solution)

iv. x1 = 4.5, x2 = 0, s1 = 0, s2 = .5, s3 = 6 (basic feasible solution)

v. x1 = 4, x2 = 0, s1 = 1, s2 = 0, s3 = 6 (basic feasible solution)

vi. x1 = 4, x2 = 1/3, s1 = 0, s2 = 0, s3 = 17/3 (basic feasible solu-
tion)

vii. x1 = −4.5, x2 = 6, s1 = 0, s2 = −8.5, s3 = 0 (basic, but not basic
feasible solution)

viii. x1 = 4, x2 = 6, s1 = −17, s2 = 0, s3 = 0 (basic, but not basic
feasible solution)

The feasible region is that from Exercise 1a of Section 1.2, and the
solution is x1 = 4.5 and x2 = 0 with z = 27.

(b)

minimize z = −x1 + 4x2

subject to

x1 + 3x2 ≥ 5

x1 + x2 ≥ 4

x1 − x2 ≤ 2

x1, x2 ≥ 0.

Note that this LP is the same as that from Exercise 1d of Section

1.1, where A =



−1 −3
−1 −1
1 −1


, c =

[
1 −4

]
, b =



−5
−4
2


, and x =

[
x1

x2

]
Since

there are three constraints, s =



s1

s2

s3


.

As in the previous exercise, there are ten possible cases to consider.
In this situation, all ten systems are consistent. The results are as
follows:

i. x1 = 0, x2 = 0, s1 = −5, s2 = −4, s3 = 2 (basic, but not basic
feasible solution)

ii. x1 = 0, x2 = 5/3, s1 = 0, s2 = −7/3, s3 = 11/3 (basic, but not
basic feasible solution)

iii. x1 = 0, x2 = 4, s1 = 7, s2 = 0, s3 = 6 (basic feasible solution)
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iv. x1 = 0, x2 = −2, s1 = −11, s2 = −6, s3 = 0 (basic, but not basic
feasible solution)

v. x1 = 5, x2 = 0, s1 = 0, s2 = 1, s3 = −3 (basic, but not basic
feasible solution)

vi. x1 = 4, x2 = 0, s1 = −1, s2 = 0, s3 = −2 (basic, but not basic
feasible solution)

vii. x1 = 2, x2 = 0, s1 = −3, s2 = −2, s3 = 0 (basic, but not basic
feasible solution)

viii. x1 = 7/2, x2 = 1/2, s1 = 0, s2 = 0, s3 = −1 (basic, but not basic
feasible solution)

ix. x1 = 11/4, x2 = 3/4, s1 = 0, s2 = −1/2, s3 = 0 (basic, but not
basic feasible solution)

x. x1 = 3, x2 = 1, s1 = 1, s2 = 0, s3 = 0 (basic feasible solution)

The feasible region is that from Exercise 1c of Section 1.2, and the
solution is x1 = 3 and x2 = 1 with z = 1.

2. The constraint equations of the standard form of the FuelPro LP are
given by

x1 + s1 = 8 (1.4)

2x1 + 2x2 + s2 = 28

3x1 + 2x2 + s3 = 32

If x1 and s1 are nonbasic, then both are zero. In this case (1.4) is inconsis-
tent. Observe that if x1 = s1 = 0, that the coefficient matrix correspond-

ing to (1.4) is given by M =



0 0 0
2 1 0
2 0 1


, which is not invertible.

3. The LP is given by

maximize z = 3x1 + 2x2

subject to

x1 ≤ 4

x1 + 3x2 ≤ 15

2x1 + x2 = 10

x1, x2 ≥ 0.

(a) The third constraint is the combination of 2x1 + x2 ≤ 10 and −2x1 −
2x2 ≤ −10. Thus, the matrix inequality form of the LP has A =


1 0
1 3
2 2
−2 −2




and b =




4
15
10
−10



.
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(b) Since there are four constraints, there are four corresponding slack
variables, s1, s2, s3, and s4, which lead to the matrix equation

maximize z = c · x
subject to

[A|Im]

[
x
s

]
= b

x, s ≥ 0,

where x =

[
x1

x2

]
and s =




s1

s2

s3

s4



. If s3 and s4 are nonbasic, then both are

zero. In this case, the preceding matrix equation becomes




1 0 1 0
1 3 0 1
2 1 0 0
−2 −1 0 0







x1

x2

s1

s2



= b.

The solution to this matrix equation yields x1 = 4 − t, x2 = 2 + 2t,
s1 = t, and s2 = 5−5t, where t is a free quantity. A simple calculation
shows that for x1, x2, s1, and s2 to all remain nonnegative, it must

be the case that 0 ≤ t ≤ 1. Note that if t = 0, then x =

[
x1

x2

]
=

[
4
2

]
;

if t = 1, then x =

[
3
4

]
. As t increases from 0 to 1, x varies along the

line segment connecting these two points.

4. The FuelPro LP has basic feasible solutions corresponding to the five
points

x =

[
0
0

]
,

[
8
0

]
,

[
8
4

]
,

[
4

10

]
, and

[
0

14

]
.

Suppose we add a constraint that does not change the current feasible
region but passes through one of these points. While there are countless
such examples, a simple choice is to add x2 ≤ 14. Now consider the
original FuelPro LP, with this new constraint added, and let s4 denote

the new corresponding slack variable. In the original LP, x =

[
0

14

]
cor-

responded to a basic feasible solution in which the nonbasic variables
were x1 and s2. In the new LP, any basic solution is obtained by setting
two of the six variables, x1, x2, s1, s2, s3, and s4, to zero. If we again choose
x1 and s2 as nonbasic, then the resulting system of equations yields a
basic feasible solution in which s4 is a basic variable equal to zero. Thus,
the LP is degenerate.
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5. A subset V of Rn is said to be convex is whenever two points belong to
V, so does the line segment connecting them. In other words, x1, x2 ∈ V,
implies that tx1 + (1 − t)x2 ∈ V for all 0 ≤ t ≤ 1.

(a) Suppose that the LP is expressed in matrix inequality form as

maximize z = c · x (1.5)

subject to

Ax ≤ b

x ≥ 0.

If x1 and x2 are feasible then Ax1 ≤ b and Ax2 ≤ b. Thus, if 0 ≤ t ≤ 1,
then

A (tx1 + (1 − t)x2) = tAx1 + (1 − t)x2

≤ tb + (1 − t)b

= b.

By similar reasoning, if x1, x2 ≥ 0, then tx1 + (1− t)x2 ≥ 0 whenever
0 ≤ t ≤ 1.

This shows that if x1 and x2 satisfy the matrix inequality and sign
conditions in (1.5), then so does tx1 + (1 − t)x2 ≥ 0 for 0 ≤ t ≤ 1.
Hence, the feasible region is convex.

(b) If x1 and x2 are solutions of LP (1.5), then both are feasible. By
the previous result, x = tx1 + (1 − t)x2 is also feasible if 0 ≤ t ≤ 1.
Since, x1 and x2 are both solutions of the LP, they have a common
objective value z0 = c · x1 = c · x2. Now consider the objective value
at x:

c · x = c · (tx1 + (1 − t)x2)

= tc · x1 + (1 − t)c · x2

= tz0 + (1 − t)z0

= z0.

Thus, x = tx1 + (1− t)x2 is also yields an objective value of z0. Since
x is also feasible, it must be optimal as well.

6. Suppose the matrix inequality form of the LP is given by

maximize z = c · x (1.6)

subject to

Ax ≤ b

x ≥ 0,
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and let x̃ denote an optimal solution. Since x̃ belongs to the convex hull
generated by the set of basic feasible solutions,

x̃ =

p∑

i=1

σixi,

where the weights σi satisfy σi ≥ 0 for all i and

p∑

i=1

σi = 1 and where

x1, x2, . . . , xp are the basic feasible solutions of (1.6). Relabeling the basic
feasible solutions if necessary, we may assume that c · xi ≤ c · x1, for
1 ≤ i ≤ p. Now consider the objective value corresponding to x̃. We
have

c · x̃ = c ·



p∑

i=1

σixi




=

p∑

i=1

c · (σixi)

=

p∑

i=1

σi (c · xi)

≤
p∑

i=1

σi (c · x1)

= (c · x1)

p∑

i=1

σi

= c · x1.

Thus the objective value corresponding to x1 is at least as large as that
corresponding to the optimal solution, x̃, which implies that x1 is also a
solution of (1.6)

Solutions to Waypoints

Waypoint 1.3.1. The matrix equation

[A|I3]

[
x
s

]
= b

has a solution given by x = 0 and s = b. Since the corresponding system has
more variables then equations, it must have infinitely many solutions.
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Waypoint 1.3.2. To solve the given matrix equation, we row reduce the aug-
mented matrix 


1 0 1 0 0
2 2 0 1 0
3 2 0 0 1

∣∣∣∣∣∣∣∣

8
28
32


 .

The result is given by



1 0 0 −1 1
0 1 0 3/2 −1
0 0 1 1 −1

∣∣∣∣∣∣∣∣

4
10
4


 .

If we let s2 and s3 denote the free variables, then we may write s2 = t,
s3 = s, where t, s ∈ R. With this notation, x1 = 4 + t − s, x2 = 10 − 3

2 t + s, and
s1 = 4 − t + s. We obtain the five extreme points as follows:

1. t = 28 and s = 32 yield x =

[
0
0

]
and s =




8
28
32




2. t = 12 and s = 8 yield x =

[
8
0

]
and s =




0
12
8




3. t = 4 and s = 0 yield x =

[
8
4

]
and s =



0
4
0




4. t = s = 0 yields x =

[
4

10

]
and s =



4
0
0




5. t = 0 and s = 4 yield x =

[
0

14

]
and s =



8
0
4




These extreme points may then be labeled on the feasible region.

Waypoint 1.3.3. 1. The feasible region and various contours are shown in
Figure ??

The extreme points are given by the x1 =

[
0
0

]
, x2 =

[
3/2
0

]
, x3 =

[
6/7
12/7

]
,

and x4 =

[
0
4

]
.

2. If c = [−5, 2], A =

[
3 2
8 3

]
, b =

[
6
12

]
, x =

[
x1

x2

]
, and s =

[
s1

s2

]
, then the

standard matrix form is given by
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x1

x2 z = 0

z = −3

z = −5

z = −7.5

FIGURE 1.10: Feasible region with contours z = 0, z = −3, z = −5 and
z = −7.5.

maximize z = c · x
subject to

[A|I2]

[
x
s

]
= b

x, s ≥ 0,

3. The two constraint equations can be expressed as 3x1 + 2x2 = 6 and
8x1 + 3x2 = 12. Substituting x1 = x2 = 0 into this equations yields
the basic solution x1 = 0, x2 = 0, s1 = 6 and s2 = 16. Performing the
same operations using the other three extreme points from (1) yields
the remaining three basic feasible solutions:

(a) x1 = 1.5, x2 = 0, s1 = 1.5 and s2 = 0
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(b) x1 =
6
7 , x2 =

12
7 , s1 = 0 and s2 = 0

(c) x1 = 0, x2 = 3, s1 = 0 and s2 = 16

4. The contours in Figure ?? indicate the optimal solution occurs at the

basic feasible solution x =

[
1.5
0

]
, where z = −7.5.
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2.1 The Simplex Algorithm

1. For each LP, we indicate the tableau after each iteration and highlight
the pivot entry used to perform the next iteration.

(a)

TABLE 2.1: Initial tableau
z x1 x2 s1 s2 s3 RHS
1 -3 -2 0 0 0 0

0 1 0 1 0 0 4
0 1 3 0 1 0 15
0 2 1 0 0 1 10

TABLE 2.2: Tableau after first iteration
z x1 x2 s1 s2 s3 RHS
1 0 -2 3 0 0 12
0 1 0 1 0 0 4
0 0 3 -1 1 0 11

0 0 1 -2 0 1 2

TABLE 2.3: Tableau after second iteration
z x1 x2 s1 s2 s3 RHS
1 0 0 -1 0 2 16
0 1 0 1 0 0 4

0 0 0 5 1 -3 5
0 0 1 -2 0 1 2

The solution is x1 = 3 and x2 = 4, with z = 17.

(b)
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TABLE 2.4: Final tableau
z x1 x2 s1 s2 s3 RHS
1 0 0 0 1/5 7/5 17
0 1 0 0 -1/5 3/5 3
0 0 0 1 1/5 -3/5 1
0 0 1 0 2/5 -1/5 4

TABLE 2.5: Initial tableau
z x1 x2 s1 s2 s3 RHS
1 -4 -3 0 0 0 0

0 1 0 1 0 0 4
0 -2 1 0 1 0 12
0 1 2 0 0 1 14

The solution is x1 = 4 and x2 = 5, with z = 31.

(c)

The solution is x1 = 2, x2 = 0, and x3 =
10

3
, with z =

74

3
.

(d)

This is a minimization problem, so we terminate the algorithm
when all coefficients in the top row that correspond to nonbasic
variables are nonpositive. The solution is x1 = 0 and x2 = 4, with
z = −8.

2. If we rewrite the first and second constraints as −x1 − 3x2 ≤ −8 and
−x1−x2 ≤ −4 and incorporate slack variables as usual, our initial tableau
becomes that shown in Table 2.13

The difficulty we face when attempting to perform the simplex algo-
rithm, centers on the fact that the origin, (x1, x2) = (0, 0) yields negative
values of s1 and 2. In other words, the origin corresponds to a basic, but
not basic feasible, solution. We cannot read off the initial basic feasible
solution as we could for Exercise (1d).

3. We list those constraints that are binding for each LP.

(a) Constraints 2 and 3
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TABLE 2.6: Tableau after first iteration
z x1 x2 s1 s2 s3 RHS
1 0 -3 4 0 0 16
0 1 0 1 0 0 4
0 0 1 2 1 0 20

0 0 2 -1 0 1 10

TABLE 2.7: Final tableau
z x1 x2 s1 s2 s3 RHS
1 0 0 5/2 0 3/2 31
0 1 0 1 0 0 4
0 0 0 5/2 1 -1/2 15
0 0 1 -1/2 0 1/2 5

(b) Constraints 1 and 3

(c) Constraints 1 and 2

(d) Constraint 2

Solutions to Waypoints

Waypoint 2.1.1. We first state the LP in terms of maximization. If we set
z̃ = −z, then

maximize z̃ = 5x1 − 2x2 (2.1)

subject to

x1 ≤ 2

3x1 + 2x2 ≤ 6

8x1 + 3x2 ≤ 12

x1, x2 ≥ 0,

where z̃ = −z.
The initial tableau corresponding to LP (2.1) is given by
Since we are now solving a maximization problem, we pivot on the high-
lighted entry in this tableau, which yields the following:
All entries in the top row corresponding to nonbasic variables are positive.
Hence x1 =

3
2 and x2 = 0 is a solution of the LP. However, the objective

value corresponding to this optimal solution, for the original LP, is given by
z = −z̃ = − 15

2 .
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TABLE 2.8: Initial tableau
z x1 x2 x3 s1 s2 s3 RHS
1 -4 -1 -5 0 0 0 0

0 2 1 3 1 0 0 14
0 6 3 3 0 1 0 22
0 2 3 0 0 0 1 14

TABLE 2.9: Tableau after first iteration
z x1 x2 x3 s1 s2 s3 RHS
1 -2/3 2/3 0 5/3 0 0 70/3
0 2/3 1/3 1 1/3 0 0 14/3

0 4 2 0 -1 1 0 8
0 2 3 0 0 0 1 14

TABLE 2.10: Final tableau
z x1 x2 x3 s1 s2 s3 RHS
1 0 1 0 3/2 1/6 0 74/3
0 0 0 1 1/2 -1/6 0 10/3
0 1 1/2 0 -1/4 1/4 0 2
0 0 2 0 1/2 -1/2 1 10

TABLE 2.11: Initial tableau
z x1 x2 s1 s2 RHS
1 -3 2 0 0 0
0 1 -2 1 0 2

0 1 1 0 1 4

TABLE 2.12: Final tableau
z x1 x2 s1 s2 RHS
1 -5 0 0 -2 -8
0 3 0 1 2 10
0 1 1 0 1 4

TABLE 2.13: Initial tableau
z x1 x2 s1 s2 s3 RHS
1 1 -4 0 0 0 0
0 -1 -3 1 0 0 -8
0 -1 -1 0 1 0 -4
0 1 -1 0 0 1 2
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TABLE 2.14: Initial tableau
z x1 x2 s1 s2 s3 RHS
1 -5 2 0 0 0 0
0 1 0 1 0 0 2
0 3 2 0 1 0 6

0 8 3 0 0 1 12

TABLE 2.15: Final tableau
z x1 x2 s1 s2 s3 RHS
1 0 31/8 0 0 5/8 15/2
0 0 -3/8 1 0 -1/8 1/2
0 0 7/8 0 1 -3/8 3/2
0 1 3/8 0 0 1/8 3/2
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2.2 Alternative Optimal/Unbounded Solutions and Degen-
eracy

1. Exercise 1

The initial tableau is shown in Table

TABLE 2.16: Initial tableau for Exercise 1
z x1 x2 s1 s2 RHS
1 -2 -6 0 0 0
0 1 3 1 0 6
0 0 1 0 1 1

After performing two iterations of the simplex algorithm, we obtain the
following:

TABLE 2.17: Tableau after second iteration for Exercise 1
z x1 x2 s1 s2 RHS
1 0 0 2 0 12
0 1 0 1 -3 3

0 0 1 0 1 1

At this stage, the basic variables are x1 = 3 and x2 = 1, with a correspond-
ing objective value z = 12. The nonbasic variable, s2, has a coefficient of
zero in the top row. Thus, letting s2 become basic will not change the
value of z. In fact, if we pivot on the highlighted entry in Table 2.17,
x2 replaces s2 as a nonbasic variable, x1 = 6, and the objective value is
unchanged.

2. Exercise 2 For an LP minimization problem to be unbounded, there must

exist, at some stage of the simplex algorithm, a basic feasible solution
in which a nonbasic variable has a negative coefficient in the top row
and nonpositive coefficients in the remaining rows.

3. Exercise 3

(a) For the current basic solution to not be optimal, it must be the case
that a < 0. However, if the LP is bounded, then the ratio test forces
b > 0. Thus, we may pivot on row and column containing b, in
which case, we obtain the following tableau:
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TABLE 2.18: Tableau obtained after pivoting on row and column containing
b

z x1 x2 s1 s2 RHS
1 0 − a

b 0 3 − a
b 10 − 2 a

b

0 1 1
b 0 1

b − 1 3 + 2
b

0 0 1
b 1 1

b
2
b

Thus, x1 = 3 +
2

b
, x2 = 0, and z = 10 − 2

a

b
.

(b) If the given basic solution was optimal, then a ≥ 0. However, if
the LP has alternative optimal solutions, then a = 0. In this case,
pivoting on the same entry in the original tableau as we did in
(b), we would obtain the result in Table 2.18, but with a = 0. Thus,

x1 = 3 +
2

b
, x2 = 0, and z = 10.

(c) If the LP is unbounded, then a < 0 and b ≤ 0.

4. Exercise 4

(a) The coefficient of the nonbasic variable, s1, in the top row of the
tableau is negative. Since the coefficient of s1 in the remaining two
rows is also negative, we see that the LP is unbounded.

(b) So long as s2 remains non basic, the equations relating s1 to each
of x1 and x2 are given by x1 − 2s1 = 4 and x2 − s1 = 5. Thus, for
each unit of increase in s1, x1 increases by 2 units; for each unit of
increase in s1, x2 increases by 1 unit.

(c) Eliminating s1 from the equations x1 − 2s1 = 4 and x2 − s1 = 5, we

obtain x2 =
1

2
x1 + 3.

(d) When s1 = 0, x1 = 4 and x2 = 5. Since s1 ≥ 0, x1 ≥ 4 and x2 ≥ 5.

Thus,we sketch that portion of the line x2 =
1

2
x1 + 3 for which

x1 ≥ 4 and x2 ≥ 5.

(e) Since z = 1, 000, z = x1 + 3x2, and x2 =
1

2
x1 + 3, we have a system

of equations whose solution is given by x1 =
1982

5
and x2 =

1006

5
.

5. Exercise 5

(a) The LP has 2 decision variables and 4 constraints. Inspection of the
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graph shows that the constraints are given by

2x1 + x2 ≤ 10

x1 + x2 ≤ 6

1

2
x1 + x2 ≤ 4

−1

2
x1 + x2 ≤ 2.

By introducing slack variables, s1, s2, s3, and s4, we can convert
the preceding list of inequalities to a system of equations in six
variables, x1, x2, s1, s2, s3, and s4. Basic feasible solutions are then
most easily determined by substituting each of the extreme points
into the system of equations and solving for the slack variables.
The results are as follows:

[
x
s

]
=




0
0

10
6
4
2




=




5
0
1
1

3/2
9/2




=




4
2
0
0
0
2




=




2
3
3
1
0
0




=




0
2
8
4
2
0




Observe that the extreme point x =

[
4
2

]
yields slack variable values

for which s1 = s2 = s3 = 0. This means that when any two of these
three variables are chosen to be nonbasic, the third variable, which
is basic, must be zero. Hence, the LP is degenerate. From a graphical
perspective, the LP is degenerate because the boundaries of three

of the constraints intersect at the single extreme point, x =

[
4
2

]

(b) If the origin is the initial basic feasible solution, at least two simplex
algorithm iterations are required before a degenerate basic feasible
solution results. This occurs when the objective coefficient of x1 is
larger than that of x2. In this case, the intermediate iteration yields

x =

[
5
0

]
. If the objective coefficient of x2 is positive and larger than

that of x1, then at most three iterations are required.
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Solutions to Waypoints

Waypoint 2.2.1. 1. The current basic feasible solution consists of x1 = a,
s1 = 2, and x2 = s2 = 0. The LP has alternative optimal solutions if a
nonbasic variable has a coefficient of zero in the top row of the tableau.
This occurs when a = 1 or a = 2.

2. The LP is unbounded if both 1− a < 0 and a− 3 < 0, i.e., if 1 < a ≤ 3. The
LP is also unbounded if both 2 − a < 0 and a − 4 ≤ 0, i.e., if 2 < a ≤ 4.
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2.3 Excess and Artificial Variables: The Big M Method

1. (a) We let e1 and a1 denote the excess and artificial variables, respec-
tively, that correspond to the first constraint. Similarly, we let e2

and a2 correspond to the second constraint. Using M = 100, our
objective becomes one of minimizing z = −x1+ 4x2+ 100a1+ 100a2.
If s3 is the slack variable corresponding to the third constraint our
initial tableau is as follows:

TABLE 2.19: Initial tableau
z x1 x2 e1 a1 e2 a2 s3 RHS
1 1 -4 0 -100 0 -100 0 0

0 1 3 -1 1 0 0 0 8

0 1 1 0 0 -1 1 0 4
0 1 -1 0 0 0 0 1 2

To obtain an initial basic feasible solution, we pivot on each of the
highlighted entries in this tableau. The result is the following:

TABLE 2.20: Tableau indicting initial basic feasible solution

z x1 x2 e1 a1 e2 a2 s3 RHS
1 201 396 -100 0 -100 0 0 1200
0 1 3 -1 1 0 0 0 8
0 1 1 0 0 -1 1 0 4
0 1 -1 0 0 0 0 1 2

Three iterations of the simplex algorithm are required before all co-
efficients in the top row of the tableau that correspond to nonbasic
variables are nonpositive. The final tableau is given by

TABLE 2.21: Final tableau
z x1 x2 e1 a1 e2 a2 s3 RHS
1 0 0 -3/4 -397/4 0 -100 -7/4 5/2
0 0 1 -1/4 1/4 0 0 -1/4 3/2
0 1 0 -1/4 1/4 0 0 3/4 7/2
0 0 0 -1/2 1/2 1 -1 1/2 1

The solution is x1 =
7

2
and x2 =

3

2
, with x2 =

5

2
.



40 Chapter 2. The Simplex Algorithm

(b) We let e1 and a1 denote the excess and artificial variables, respec-
tively, that correspond to the first constraint. Similarly, we let e3

and a3 correspond to the third constraint. Using M = 100, our ob-
jective becomes one of minimizing z = x1 + x2 + 100a1 + 100a3. If
s2 is the slack variable corresponding to the second constraint our
initial tableau is as follows:

TABLE 2.22: Initial tableau
z x1 x2 e1 a1 s2 e3 a3 RHS
1 -1 -1 0 -100 0 0 -100 0

0 2 3 -1 1 0 0 0 30
0 -1 2 0 0 1 0 0 6

0 1 3 0 0 0 -1 1 18

To obtain an initial basic feasible solution, we pivot on each of the
highlighted entries in this tableau. The result is the following:

TABLE 2.23: Tableau indicting initial basic feasible solution

z x1 x2 e1 a1 s2 e3 a3 RHS
1 299 599 -100 0 0 -100 0 4800
0 2 3 -1 1 0 0 0 30
0 -1 2 0 0 1 0 0 6
0 1 3 0 0 0 -1 1 18

Three iterations of the simplex algorithm lead to a final tableau
given by

TABLE 2.24: Final tableau
z x1 x2 e1 a1 s2 e3 a3 RHS
1 0 0 -3/7 -697/7 -1/7 0 -100 12
0 0 0 -5/7 5/7 3/7 1 -1 6
0 0 1 -1/7 1/7 2/7 0 0 6
0 1 0 -2/7 2/7 -3/7 0 0 6

The solution is x1 = 6 and x2 = 6, with x2 = 12.

(c) We let a1 denote the artificial variable corresponding to the first
(equality) constraint, and we let e2 and a2 denote the excess and
artificial variables, respectively, that correspond to the second con-
straint. Using M = 100, our objective becomes one of maximizing
z = x1 + 5x2 + 6x3 − 100a1 − 100a2. The initial tableau is given by

To obtain an initial basic feasible solution, we pivot on each of the
highlighted entries in this tableau. The result is the following:
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TABLE 2.25: Initial tableau
z x1 x2 x3 a1 e2 a2 RHS
1 -1 -5 -6 100 0 100 0

0 1 4 2 1 0 0 50

0 1 -4 4 0 -1 1 40

TABLE 2.26: Tableau indicting initial basic feasible solution

z x1 x2 x3 a1 e2 a2 RHS
1 -201 -5 -606 0 100 -9000
0 1 4 2 1 0 0 50
0 1 -4 4 0 -1 1 40

Three iterations of the simplex algorithm are required before all co-
efficients in the top row of the tableau that correspond to nonbasic
variables are nonnegative. The final tableau is given by

TABLE 2.27: Final tableau
z x1 x2 x3 a1 e2 a2 RHS
1 2 7 0 103 0 100 150
0 1 12 0 2 1 -1 60
0 1/2 2 1 1/2 0 0 25

The solution is x1 = x2 = 0 and x3 = 25, with z = 150.

Solutions to Waypoints

Waypoint 2.3.1. The LP is given by

maximize z = c · x
subject to

[A|I2]

[
x
s

]
= b

x, s ≥ 0,

where A =

[
1.64 2.67
−2.11 −2.3

]
, c =

[
−45.55 −21.87

]
, b =

[
31.2
−13.0

]
, x =

[
x1

x2

]
, and

s =

[
s1

s2

]
.
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Waypoint 2.3.2. Let s1 denote the slack variable for the first constraint, and
let e2 and a2 denote the excess and artificial variables, respectively, for the
second constraint. Using M = 100, our objective becomes one of minimizing
z = 45.55x1 + 21.87x2 + 100a2. The initial tableau is as follows:

TABLE 2.28: Initial tableau
z x1 x2 s1 e2 a2 RHS
1 -45.55 -21.87 0 0 -100 0
0 1.64 2.67 1 0 0 31.2

0 2.11 2.3 0 -1 1 13.9

To obtain an initial basic feasible solution, we pivot on the highlighted entry
in this tableau. The result is the following:

TABLE 2.29: Tableau indicting initial basic feasible solution

z x1 x2 s1 e2 a2 RHS
1 165 208 0 -100 0 1390
0 1.64 2.67 1 0 0 13.2
0 2.11 2.3 0 -1 1 13.9

Two iteration of the simplex algorithm yield the final tableau:

TABLE 2.30: Final tableau
z x1 x2 s1 e2 a2 RHS
1 -26 0 0 -9.5 -90.5 132.17
0 -.81 0 1 1.16 -1.16 15
0 .918 1 0 -.435 .435 6.04

Thus x1 is nonbasic so that the total foraging time is minimized when x1 = 0
grams of grass and x2 ≈ 6.04 grams of forb, in which case z ≈ 132.17 minutes
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2.4 Duality

1. At each stage of the simplex algorithm, the decision variables in the
primal LP correspond to a basic feasible solutions. Values of the decision
variables in the dual LP are recorded by the entries of the vector y. Only
at the final iteration of the algorithm, do the dual variables satisfy both
yA ≥ c and y ≥ 0, i.e., only at the final iteration do the entries of y
constitute a basic feasible solution of the dual.

2. The given LP can be restated as

maximize z = 3x1 + 4x2

subject to

x1 ≤ 4

x1 + 3x2 ≤ 15

−x1 + 2x2 ≥ 5

x1 − x2 ≥ 9

x1 + x2 ≤ 6

−x1 − x2 ≤ −6

x1, x2 ≥ 0.

In matrix inequality form, this becomes

maximize z = c · x
subject to

Ax ≤ b

x ≥ 0,

where A =




1 0
1 3
1 −1
−1 1
1 1
−1 −1




, c =
[
3 4

]
, b =




4
15
−5
9
6
−6




, and x =

[
x1

x2

]
.

The corresponding dual is given by

minimize w = y · b
subject to

yA ≥ c

y ≥ 0,
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where y =
[
y1 y2 y3 y4 y5 y6

]
. In expanded form this is identical

to

minimize w = 4y1 + 15y2 − 5y3 + 9y4 + 6(y5 − y6)

subject to

y1 + y2 + y3 − y4 + (y5 − y6) ≥ 3

3y2 − y3 + y4 + (y5 − y6)

y1, y2, y3, y4, y5, y6 ≥ 0.

Now define the new decision variable ỹ = y5− y6, which is unrestricted
in sign due to the fact y5 and y6 are nonnegative. Since y5 and y6,
together, correspond to the equality constraint in the primal LP, we see
that ỹ is a dual variable unrestricted in sign that corresponds to an
equality constraint in the primal.

3. The standard maximization LP can be written in matrix inequality form
as

maximize z = ctx

subject to

Ax ≤ b

x ≥ 0,

where x belongs to Rn, c is a column vector in Rn, b belongs to Rm, and
A is an m-by-n matrix.

The dual LP is then expressed as

minimize w = ytb

subject to

ytA ≥ ct

y ≥ 0,

where we have assumed the dual variable vector, y, is a column vector
in Rm. But, by transpose properties, this is equivalent to

maximize w̃ = −bty

subject to

−Aty ≤ −c

y ≥ 0.

The preceding LP is a maximization problem, whose dual is given by
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minimize z̃ = xt(−c)

subject to

xt(−At) ≥ −bt

x ≥ 0.

Using transpose properties again, we may rewrite this final LP as

maximize z = ctx

subject to

Ax ≤ b

x ≥ 0,

which is the original LP.

4. (a) The original LP has four decision variables and three constraints.
Thus, the dual LP has three decision variables and four constraints.

(b) The current primal solution is not optimal, as the nonbasic variable,
s1, has a negative coefficient in the top row of the tableau. By the
ratio test, we conclude that s1 will replace x1 as a basic variable
and that s1 = 4 in the updated basic feasible solution. Since the
coefficient of s1 in the top row is −2, the objective value in the
primal will increase to 28. By weak duality, we can conclude that
the objective value in the solution of the dual LP is no less than 28.

5. The dual of the given LP is

minimize w = y1 − 2y2

subject to

y1 − y2 ≥ 2

−y1 + y2 ≥ 1

y1, y2 ≥ 0,

which is infeasible.

6. (a) The current tableau can also be expressed in partitioned matrix
form as



z x y yb
1 [�,�] [1, 0, 0] �

0 MA M Mb




Comparing this matrix to that given in the problem, we see that
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M =




1/3 0 0
−1/2 10

−1/3 0 1


. Thus,

b =M−1(Mb)

=




3 0 0
3/2 1 0
1 0 1







6
3

10


 =



18
12
16


 ,

and

A =M−1(MA)

=




3 0 0
3/2 1 0
1 0 1






−2/3 1

3 0
14/3 0


 =



−2 3
2 3/2
4 1


 .

Using A and b, we obtain the original LP:

maximize z = 2x1 + 3x2

subject to

−2x1 + 3x2 ≤ 18

2x1 +
3

2
x2 ≤ 12

4x1 + x2 ≤ 16

x1, x2 ≥ 0.

(b) The coefficients of x1 and x2 in the top row of the tableau are given
by

−c + yA = −[2, 3]+ [1, 0, 0]A

= [−4, 0]

The unknown objective value is

z = yb

= [1, 0, 0]



18
12
16




= 18.

(c) The coefficient of x1 in the top row of the tableau is -4, so an ad-
ditional iteration of the simplex algorithm is required. Performing
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the ratio test, we see that x1 replaces s2 as a nonbasic variable. The

updated decision variables become x1 = 1 and x2 =
20

3
, with a

corresponding objective value of z = 22. The slack variable coeffi-
cients in the top row of the tableau are s1 =

1
3 , s2 =

4
3 , and s3 = 0,

which indicates that the current solution is optimal. Therefore the

dual solution is given by y =



1/3
4/3
0


 with objective value w = 22.

7. Since the given LP has two decision variables and four constraints, the
corresponding dual has four decision variables, y1, y2, y3, and y4 along
with two constraints. In expanded form, it is given by

minimize z = 4y1 + 6y2 + 33y3 + 24y4

subject to

−y1 + 2y3 + 2y4 ≥ 1

y1 + y2 + 3y3 + y4 ≥ 5

y1, y2, y3, y4 ≥ 0.

To solve the dual LP using the simplex algorithm, we subtract excess
variables, e1 and e2, from the first and second constraints, respectively,
and add artificial variables, a1 and a2. The Big M method with M = 1000
yields an initial tableau given by

TABLE 2.31: Initial tableau
w y1 y2 y3 y4 e1 a1 e2 a2 RHS
1 -4 -6 -33 -24 0 -1000 0 -1000 0
0 -1 0 2 2 -1 1 0 0 1
0 1 1 3 1 0 0 -1 1 5

.

The final tableau is

TABLE 2.32: Final tableau
w y1 y2 y3 y4 e1 a1 e2 a2 RHS
1 -11/2 0 0 -3 -15/2 -1985/2 -6 -994 75/2
0 -1/2 0 1 1 -1/2 1/2 0 0 1/2
0 5/2 1 0 -2 3/2 -3/2 -1 1 7/2

.

The excess variable coefficients in the top row of this tableau are the



48 Chapter 2. The Simplex Algorithm

additive inverses of the decision variable values in the solution of the

primal. Hence, the optimal solution of the primal is given by x1 =
15

2

and x2 = 6, with corresponding objective value z =
75

2
.

8. By the complementary slackness property, x0 is the optimal solution of

the LP provided we can find y0 =




y1

y2

y2

y4




in R4 such that

[
y0A − c

]
i [x0]i = 0 1 ≤ i ≤ 6

and

[y0] j [b − Ax0] j = 0 1 ≤ j ≤ 4.

We have

b − Ax0 =




0
0

61/7
0



,

so that in a dual solution it must be the case that y3 = 0. Furthermore,
when y3 = 0,

y0A − c =




y1 + 7y2 + 7y4 − 5
2y1 − 5y2 + 8y4 − 1
4y1 + 2y2 − 3y4 − 1
3y1 + y2 + 5y4 − 4

4y1 + 2y2 + 2y4 − 1
6y1 + 3y2 + 4y4 − 2




.

By complementary slackness again, the first, third and fourth compo-
nents of this vector must equal zero, whence we have a system of 3
linear equations, whose solution is given by y1 =

103
204 , y2 =

37
204 , and

y3 =
47

102 . If we define y0 =




103/204
37/204

0
47/102



, then

w = y0b

=
53

17
= cx0

so that x0 is the optimal solution of the LP by Strong Duality.
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9. Player 1’s optimal mixed strategy is given by the solution of the LP

maximize z subject to

Ax ≥ ze

et · x = 1

x ≥ 0,

and Player 2’s by the solution of the corresponding dual LP,

minimize w subject to

yA ≤ wet

y · e = 1

y ≥ 0.

Here e =

[
1
1

]
. The solution of the first LP is given by x0 =

[
.7
.3

]
and the

solution of the second by x0 =

[
.5
.5

]
. The corresponding objective value

for each LP is z = w = .5, thereby indicating that the game is biased in
Player 1’s favor.

10. (a) Since A is an m-by-n matrix, b belongs toRm, and c is a row vector
inRn, the matrix M has m+n− 1 rows and m+n− 1 columns. Fur-

thermore, the transpose of a partitioned matrix,

[
A B
C D

]
, is given

by

[
At Ct

Bt Dt

]
, which can be used to show Mt = −M.

(b) Define vecw0 =



yt

0
x0

1


. Then w0 belongs to Rm+n+1 and has nonnega-

tive components since x0 and y0 are primal feasible and dual fea-
sible vectors belonging to Rn and Rm, respectively. Furthermore,
[w0]m+n+1 = 1 > 0. We have

Mw0 =



0m×m −A b

At 0m×n −ct

−bt c 0






yt

0
x0

1




=



−Ax0 + b
Atyt

0 − ct

−btyt
0
+ cx0




≥ 0
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since the primal feasibility of x0 dictates Ax0 ≤ b, the dual feasi-
bility of y0 and transpose properties imply Atyt

0
≥ ct, and strong

duality forces btyt
0
= cx0.

(c) Letting κ, x0, and y0 be defined as in the hint, we have

0 ≤Mw0

=



0m×m −A b

At 0m×n −ct

−bt c 0






κyt

0
κx0

κ




= κ



0m×m −A b

At 0m×n −ct

−bt c 0




[
yt

0
x0

]

= κ



−Ax0 + b
Atyt

0 − ct

−btyt
0
+ cx0




Since κ > 0, we conclude that Ax0 ≤ b, Atyt
0 ≥ ct, and cx0 ≥

btyt
0
. Transpose properties permit us to rewrite the second of these

matrix inequalities as y0A ≥ c. Thus x0 and y0 are primal feasible
and dual feasible, respectively. Moreover, the third inequality is
identical to cx0 ≥ y0b if we combine the facts btyt

0
= y0b, each

of these two quantities is a scalar, and the transpose of a scalar
is itself. But the Weak Duality Theorem also dictates cx0 ≤ y0b,
which implies cx0 = y0b. From this result, we conclude x0 and y0

constitute the optimal solutions of the (4.1) and (4.3), respectively.

Solutions to Waypoints

Waypoint 2.4.1. In matrix inequality form, the given LP can be written as

maximize z = c · x
subject to

Ax ≤ b

x ≥ 0,

where vecx =



x1

x2

x3


, c = [3, 5, 2], A =




2 1 1
1 2 1
3 1 5
−1 1 1



, and b =




= 2
2
4
3



. The dual LP is

given by
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minimize w = y · b
subject to

yA ≥ c

y ≥ 0,

where y =
[
y1 y2 y3 y4

]
. In expanded form, this is equivalent to

minimize w = 2y1 + 2y2 + 4y3 + 3y4

subject to

2y1 + y2 + 3y3 − y4 ≥ 3

y1 + 2y2 + y3 + y4 ≥ 5

y1 + y2 + 5y3 + y4 ≥ 2

y1, y2, y3, y4 ≥ 0.

The original LP has its solution given by x0 =



2/3
2/3
0


 with z0 =

16

3
. The

solution of the dual LP is y0 =
[
1/3 7/3 0 0

]
with w0 =

16

3
.

Waypoint 2.4.2. 1. If Steve always chooses row one and Ed chooses
columns one, two, and three with respective probabilities, x1, x2, and
x3, then Ed’s expected winnings are given by

f1(x1, x2, x3) =
[
1 0 0

]
· A ·



x1

x2

x3




= x1 − x2 + 2x3,

which coincides with the first entry of the matrix-vector product, Ax.
By similar reasoning,

f2(x1, x2, x3) =
[
0 1 0

]
· A ·



x1

x2

x3




= 2x1 + 4x2 − x3

and

f3(x1, x2, x3) =
[
0 0 1

]
· A ·



x1

x2

x3




= −2x1 + 2x3,

which equal the second and third entries of Ax, respectively.
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2. If Ed always chooses column one and Steve chooses rows one, two, and
three with respective probabilities, y1, y2, and y3, then Steve’s expected
winnings are given by

g1(y1, y2, y3) =
[
y1 y2 y3

]
· A ·



1
0
0


 = y1 + 2y2 − 2y3,

which coincides with the first entry of the product, yA. By similar rea-
soning,

g2(y1, y2, y3) =
[
y1 y2 y3

]
· A ·



0
1
0




= −y1 + 4y2

and

g3(y1, y2, y3) =
[
y1 y2 y3

]
· A ·



0
0
1




= 2y1 − y2 + 2y3,

which equal the second and third entries of yA, respectively.

Waypoint 2.4.3. To assist in the formulation of the dual, we view the primal
objective, z, as the difference of two nonnegative decision variables, z1 and
z2. Thus the primal LP can be expressed in matrix inequality form as

maximize
[
1 −1 01×3

]
·



z1

z2

x




subject to


e −e −A
0 0 et

0 0 −et


 ·



z1

z2

x


 ≤



03×1

1
−1




x ≥ 0 and z1, z2 ≥ 0.

If the dual LP has its vector of decision variables denoted by
[
y w1 w2

]
,

where y is a row vector inR3 with nonnegative components, and both w1 and
w2 are nonnegative as well, then the dual is given by
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minimize
[
y w1 w2

]
·



03×1

1
−1




subject to

[
y w1 w2

]
·



e −e −A
0 0 et

0 0 ∗ −et


 ≥

[
1 −1 01×3

]

y ≥ 01×3 and w1,w2 ≥ 0.

If we write w = w1 − w2, then this formulation to the dual simplifies to be

minimize w subject to

yA ≤ wet

y · e = 1

y ≥ 0.
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2.5 Sufficient Conditions for Local and Global Optimal So-
lutions

1. If f (x1, x2) = e−(x2
1
+x2

2), then direct computations lead to the following
results:

∇ f (x) =

[
−2x1 f (x1, x2)
−2x2 f (x1, x2)

]

and

H f (x) =

[
(−2 + 4x2

1
) f (x1, x2) 4x1x2 f (x1, x2)

4x1x2 f (x1, x2) (−2 + 4x2
2
) f (x1, x2)

]

so that

∇ f (x0) ≈
[
−.2707
−.2707

]

and

H f (x0) ≈
[
.2707 .5413
.5413 .2702

]
.

Thus,

Q(x) = f (x0) + ∇ f (x0)t(x − x0) +
1

2
(x − x0)tH f (x0)(x − x0)

≈ 2.3007− 1.895x1 − 1.895x2 + .2707x2
1 + .2707x2

2 + 1.0827x1x2

The quadratic approximation together with f are graphed in Figure 2.1.

The solution is given by x =

[
4.5
0

]
, with z = 27.

2. Calculations establish that Hessian of f is given by H f (x) = φ(x)A,

where φ(x) =
1

(74 + .5x1 + x2 + x3)1/10
and where

A =



.045 .09 .09
.09 .19 .19
.09 .19 .19


 .
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FIGURE 2.1: Plot of f with quadratic approximation

Observe that φ(x) > 0 for x in S and that A is positive semidefinite. (Its
eigenvalues are .002, .423, and zero.)

Now suppose that x0 belongs to S and that λ0 is an eigenvalue of H f (x0)
with corresponding eigenvector v. Then

λ0v = H f (x0)v

= φ(x0)Av,

implying
λ0

φ(x0)
is an eigenvalue of A. Since φ(x0) > 0 and each eigen-

value of A is nonnegative, then λ0 must be nonnegative as well. Hence,
H f (x0) is positive semidefinite, and f is convex.
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3. (a) We have ∇ f (x) =

[
2x1 + x2 − 1
x1 + 4x2 − 4

]
, which yields the critical point,

x0 =

[
0
1

]
. Since H f (x) =

[
2 1
1 4

]
has positive eigenvalues, λ = 3±

√
2,

we see that f is strictly convex onR2 so that x0 is a global minimum.

(b) We have∇ f (x) =

[
2x1 − 10x2 + 4
−10x1 + 14x2 − 8

]
, which yields the critical point,

x0 =

[
−1/3
1/3

]
. Since H f (x) =

[
2 −10 −10 14

]
has mixed-sign

eigenvalues, λ = 8 ± 2
√

34, x0 is a saddle point.

(c) We have ∇ f (x) =

[
−4x1 + 6x2 − 6
6x1 − 10x2 + 8

]
, which yields the critical point,

x0 =

[
−3
−1

]
. Since H f (x) =

[
−4 6
6 −10

]
has negative eigenvalues,

λ = −7± 3
√

5, we see that f is strictly concave on R2 so that x0 is a
global maximum.

(d) We have ∇ f (x) =

[
4x3

1
− 24x2

1
+ 48x1 − 32

8x2 − 4

]
, which yields a single

critical point at x0 =

[
2

1/2

]
. The Hessian simplifies to H f (x) =

[
12(x1 − 2)2 0

0 8

]
and has eigenvalues of 12(x1 − 2)2 and 8. Thus,

f is concave on R2 and x0 is a global maximum.

(e) We have ∇ f (x) =

[
cos(x1) cos(x2)
− sin(x1) sin(x2)

]
, which yields four critical

points: x0 = ±
[
π/2

0

]
and x0 = ±

[
0
π/2

]
. The Hessian is

H f (x) =

[
− sin(x1) cos(x2) − cos(x1) sin(x2)
− cos(x1) sin(x2) − sin(x1) cos(x2)

]
,

which yields a repeated eigenvalue, λ = −1, when x0 =

[
π/2

0

]
, a

repeated eigenvalue λ = 1, when x0 =

[
−π/2

0

]
, and eigenvalues

λ = ±1, when x0 =

[
0
±π/2

]
. Thus, x0 =

[
π/2

0

]
is a local maximum,

x0 =

[
−π/2

0

]
is a local minimum, and x0 =

[
0
±π/2

]
are saddle points.

(f) We have ∇ f (x) =

[
2x1/(x2

1
+ 1)

x2

]
, which yields a single critical point
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at the origin. Since f is differentiable and nonnegative on R2, we
conclude immediately that the origin is a global minimum. In
addition,

H f (x) =




2(1−x1)2

(x2
1
+1)2 0

0
1



.

The eigenvalues of this matrix are positive when −1 < x1 < 1. Thus
f is is strictly convex its given domain.

(g) If f (x1, x2) = e
−
(

x2
1
+x2

2
2

)

, then ∇ f (x) = f (x)

[
x1

x2

]
so that f has a sin-

gle critical point at the origin. The Hessian simplifies to H f (x) =

f (x)



x2

1
− 1 x1x2

x1x2

x2
2
− 1


, which has eigenvalues in terms of x given by

λ =

[
− f (x)

(x2
1
+ x2

2
− 1) f (x)

]
. Since f (x) > 0 and x2

1
+ x2

2
< 1, we have that

f is strictly concave on its given domain and the origin is a global
minimum.

4. We have ∇ f (x) = Ax − b, which is the zero vector precisely when x0 =

A−1b. The Hessian of f is simply A, so f is strictly convex (resp. strictly
concave) on Rn when A is positive definite (resp. negative definite).
Thus, x0 is the unique global minimum (resp. unique global maximum)
of f .

When A =

[
2 1
1 3

]
, b =

[
−1
4

]
, and c = 6, x0 =

[
−7/5
9/5

]
. The eigenvalues of

A are λ =
5 ±
√

5

2
, so x0 is the global minimum.

5. Write n =



n1

n2

n3


. Since n , 0, we lose no generality by assuming n3 , 0.

Solving ntx = d for x3 yields x3 as a function of x1 and x2:

f : R2 → R where f (x1, x2) = x2
1 + x2

2 +
(d − n1x1 − n2x2)2

n2
3

.

The critical point of f is most easily computed using Maple and sim-

plifies to x0 =
[
n1d/‖n‖2, n1d/‖n‖2

]
The eigenvalues of the Hessian are

λ1 = 2 and λ2 =
2‖n‖2

n2
3

so that f is strictly convex and x0 is the global

minimum. The corresponding shortest distance is |d|
‖n‖
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For the plane x1+2x2+x3 = 1, n =



1
2
3


 and d = 1. In this case, x0 =



1/14
1/7

3/14




with a corresponding distance of
1
√

14
.

6. The gradient of f is ∇ f (x) =

[
4x3

1
2x2

]
, which vanishes at the origin. Since f

is nonnegative and f (0) = 0, we see that x0 = 0 is the global minimum.

The Hessian of f at the origin is H f (0) =
[
0 0 0 2

]
, which is positive

semidefinite.

The function f (x1, x2) = −x4
1
+x2

2
has a saddle point at the origin because

f (x1, 0) = −x4
1

has a minimum at x1 = 0 and f (0, x2) = x2
2

has a maximum

at x2 = 0. The Hessian of f at the origin is again H f (0) =
[
0 0 0 2

]
.

7. The function f (x) = x4
1
+ x4

2
has a single critical point at x0 = 0, which

is a global minimum since f is nonnegative and f (0) = 0. The Hessian
evaluated at x0 is the zero matrix, whose only eigenvalue is zero. Simi-
larly, f (x) = −x4

1
− x4

2 has a global maximum at x0 = 0, where its Hessian
is also the zero matrix.

8. (a) Player 1’s optimal mixed strategy is the solution of

maximize = z

subject to

2x1 − 3x2 ≥ z

−x1 + 4x2 ≥ z

x1 + x2 = 1

x1, x2 ≥ 0,

which is given by x0 =

[
7/10
3/10

]
, with corresponding objective value

z0 =
1

2
.

Player 2’s optimal mixed strategy is the solution of the correspond-
ing dual LP,

minimize = w

subject to

2y1 − y2 ≤ w

−3y1 + 4y2 ≤ w

y1 + y1 = 1y1, y2 ≥ 0,
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which is y0 =

[
1/2
1/2

]
, with corresponding objective value w0 =

1

2
.

(b) We have

f (x1, y1) =

[
y1

1 − y1

]t

A

[
x1

1 − x1

]

= 10x1y1 − 5x1 − 7y1 + 4,

whose gradient,∇ f (x1, y1) vanishes at x1 =
7

10
, y1 =

1

2
. The Hessian

of f is a constant matrix having eigenvalues λ = ±10 so that this

critical point is a saddle point. The game value is f
(

7

10
,

1

2

)
=

1

2
.

(c) The only solution of f (x1, y1) = 1
2 is simply

(
7

10
,

1

2

)
.

(d) A game value 20% higher than
1

2
is

3

5
. The equation f (x1, y1) =

3

5
simplifies to

10x1y1 − 5x1 − 7y1 +
17

5
= 0.

The graph of this relation is shown in Figure ??.

9. Calculations, which are most easily performed with Maple, estab-

lish that f (x1, y1) =

[
y1

1 − y1

]t

A

[
x1

1 − x1

]
has a saddle point at x1 =

d − b

a + d − b − c
, y1 =

d − c

a + d − b − c
. Since

f

(
d − b

a + d − b − c
,

d − c

a + d − b − c

)
=

ad − bc

a + d − b − c
,

the game is fair provided det A , 0, or, in other words, if A is nonin-
vertible.
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x1

y1

FIGURE 2.2: The relation 10x1y1 − 5x1 − 7y1 +
17

5
= 0.
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2.6 Quadratic Programming

1. (a) The Hessian of f is



10 0 4
0 16 0
4 0 2


. If p =




1
2
−1


, A =

[
1 −1 1
1 2 1

]
, and

b =

[
1
−3

]
, then the problem is given as

minimize f (x) =
1

2
xtQx + ptx

subject to

Ax = b.

(b) The eigenvalues of Q are λ = 1 (repeated) and λ = 2, so Q is
positive definite and the problem is convex. Thus,

[
µ0
x0

]
=

[
0m×m A

At Q

]−1 [
b
−p

]

=




−44/9
65/9
−1/3
−4/3

0



.

The problem then has its solution given by x0 =




1/3
−4/3

0


. The corre-

sponding objective value is f (1/3,−4/3) =
106

9
.

2. (a) The matrix Q is indefinite. However, the partitioned matrix,[
0m×m A

At Q

]
is still invertible so that

[
µ0
x0

]
=

[
0m×m A

At Q

]−1 [
b
−p

]

=




−259/311
178/311
−191/311
−11/311
−142/311



.
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Thus, the problem has a unique KKT point, x0 =



−191/311
−11/311
−142/311


, with

corresponding multiplier vector, µ0 =

[
−259/311
178/311

]
. The bordered

Hessian becomes

B =




0 0 −1 2 −1
0 0 −4 0 1
−1 −4 1 −2 0
2 0 −2 3 1
−1 1 0 1 3



.

In this case there are n = 3 decision variables and m = 2 equality
constraints. Since the determinants of both B and its leading prin-
cipal minor of order 4 are positive, we see that x0 is the solution.

(b) The problem has a unique KKT point given by x0 =




6
13/4
1/4


 with

corresponding multiplier vector, λ0 =



5/2
3
0


. At x0 only the first two

constraints of Cx ≤ d are binding. Thus, we set C̃ =

[
−1 2 2
1 −1 3

]

and d̃ =

[
1
2

]
, in which case

B =




0 0 −1 2 2
0 0 1 −1 −3
−1 1 1 −2 0
2 −1 −2 3 1
2 −3 0 1 3



.

There are n = 3 decision variables, m = 0 equality constraints, and
k = 2 binding inequality constraints. Since the determinant of B
and its leading principal minor of order 4 are positive, we see that
x0 is the solution.

(c) The are two KKT points. The first is given by x0 =




−17/40
−1/10

7/8
0




with

corresponding multiplier vectors, λ0 ≈
[

0
1.5788

]
and µ0 ≈



.4405
−.2806
1.295


.
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The second constraint is binding at x0, so we set C̃ =
[
−1 3 1 0

]

and d̃ =
[
1
]
, in which case,

B =



03×3 03×1 A
01×3 0 C̃
At C̃t Q




=




0 0 0 01 2 3 −1
0 0 0 0 1 2 3 −1
0 0 0 0 0 −5 4 2
0 0 0 0 3 1 5 6
0 0 0 0 −1 3 1 0
1 0 3 −1 2 4 0 0
2 −5 1 3 4 7 −2 −1
3 4 5 1 0 −2 −3 −1
−1 2 6 0 0 −1 −1 0




There are n = 4 decision variables, m = 3 equality constraints, and
k = 1 binding inequality constraints. Since n − m − k = 0, we only
need to check that the determinant of B itself has the same sign as

(−1)m+k = 1, which it does. Hence, x0 =




−17/40
−1/10

7/8
0




is a solution.

The second KKT point is given by x0 ≈




7.593
−2.406
−.9591
−2.096




with correspond-

ing multiplier vectors, λ0 =

[
0
0

]
and µ0 ≈



−2.550
1.555
−1.671


. In this case nei-

ther inequality constraint is binding. Performing an analysis simi-
lar to that done for the first KKT point leads to a situation in which
the bordered Hessian test is inconclusive. In fact, f (x0) ≈ 12.1,

whereas f







−17/40
−1/10

7/8
0






≈ −1.138

3. To show that
[
0m×m A

At Q

]−1

=

[
S−1 −S−1AQ−1

−Q−1AtS−1 Q−1(Q + AtS−1A)Q−1

]
, (2.2)

we will verify that the product of

[
0m×m A

At Q

]
and

[
S−1 −S−1AQ−1

−Q−1AtS−1 Q−1(Q + AtS−1A)Q−1

]
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is the (m+n)-by-(m+n) identity matrix. Viewing each of these two par-
titioned matrices as being comprised of four blocks, we calculate four
different products as follows:

Top left block of product:

0m×mS−1 − AQ−1AtS−1 = −AQ−1At(−AQ−1At)−1 (2.3)

= Im×m

Bottom left block of product:

AtS−1 −QQ−1AtS−1 = AtS−1 − AtS−1 (2.4)

= 0n×m (2.5)

Top right block of product:

−0m×mS−1AQ−1 + AQ−1
(
Q + AtS−1A

)
Q−1 = AQ−1

(
Q + AtS−1A

)
Q−1

(2.6)

= AQ−1QQ−1 + AQ−1AtS−1AQ−1

= AQ−1 + AQ−1At
(
−AQ−1At

)−1
AQ−1

(2.7)

= AQ−1 − Im×mAQ−1 (2.8)

= 0m×n (2.9)

Bottom right block of product:

−AtS−1AQ−1 +QQ−1
(
Q + AtS−1A

)
Q−1 = −AtS−1AQ−1 +

(
Q + AtS−1A

)
Q−1

(2.10)

= −AtS−1AQ−1 + In×n + AtS−1AQ−1

= In×n. (2.11)

If we combine the results of (2.3)-(2.10), we see that

[
0m×m A

At Q

] [
S−1 −S−1AQ−1

−Q−1AtS−1 Q−1(Q + AtS−1A)Q−1

]
=

[
Im×m 0m×n

0n×m In×n

]

= Im+n.

4. We seek to maximize the probability an individual is heterozygous,
namely 2x1x2 + 2x1x3 + 2x2x3, subject to the constraints that x1, x2, and
x3 are nonnegative and sum to 1. Equivalently, we seek to minimize
f (x) = −(2x1x2 + 2x1x3 + 2x2x3) subject to these same constraints. Since
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the Hessian of f is




0 −2 −2
−2 0 −2
−2 −2 0


, our quadratic programming problem,

in matrix form, is given by

minimize f (x) =
1

2
xtQx + ptx

subject to

Ax = b

Cx ≤ d,

where A =
[
1 1 1

]
, b = 1, C = −I3, and d =



0
0
0


.

The Lagrangian has a unique KKT point at x0 =



1/3
1/3
1/3


, with correspond-

ing multiplier vectors, λ0 =



0
0
0


 andµ0 =

4

3
, and corresponding objective

value f (x0) = −2

3
. None of the three inequality constraints are binding,

so the bordered Hessian is simply

B




0 1 1 1
1 0 −2 −2 −2
1 −2 0 −2
1 −2 −2 0




In this case, n = 3, m = 1, and k = 0, so we only need to check that det(B)
has the same sign as (−1)m+k = −1. Since det(B) = −12, x0 is optimal.

5. The solution of the bimatrix game is given by the solution of the
quadratic programming problem
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min
z,x,y

f (z, x, y) = etz − xt(A + B)y

subject to

Aty ≤ z1e

Bx ≤ z2e

etx = 1

ety = 1

x, y ≥,

If B = −A and if we denote z =

[
w
−z

]
, then

[
z, x, y

]
is feasible for the

quadratic programming problem if and only if all 4 of the following
conditions hold:

(a) Bx ≤ −z,i.e., Ax ≥ z,

(b) Aty ≤ w, i.e., ytA ≤ w,

(c) etx = 1, and

(d) ety = 1.

But for the 2 LPs that comprise the zero-sum matrix game, these 4 con-
ditions hold if and only if both x and y are primal and dual feasible,
respectively, with corresponding objective values, w and z. Thus the
solution of the quadratic programming problem coincides with the so-
lutions of the LP and corresponding dual LP that comprise the solution
of the zero-sum matrix game.

6. One equilibrium solution arises when Driver A always drives straight
and Driver B always swerves. In this case, Driver A’s pure strategy
yields a payoff of 2 and Drivers B’s a payoff of 0. An analogous result
holds if the drivers’ pure strategies are interchanged.

To determine the mixed-strategy equilibrium, we set

Q =



02×2 02×2 02×2

02×2 02×2 −(A + B)
02×2 −(A + B)t 02×2


 ,
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p =




1
1
0
0
0
0




, and

C =




M1 02×2 At

M2 B 02×2

02×2 −I2 02×2

02×2 02×2 −I2



,

where M1 =

[
−1 0
−1 0

]
, and M2 =

[
0 −1
0 −1

]
. We also set d = 08×1, E =

[
0 0 1 1 0 0
0 0 0 0 1 1

]
, and b = e =

[
1
1

]
.

Using Maple’s QPSolve command, we obtain a solution to the quadratic
programming problem,

minimize f (w) =
1

2
wtQw + ptw

subject to

Ew = b

Cw ≤ d,

given by

w0 =



z0

x0

y0


 =




1/2
1/2
1/2
1/2
1/2
1/2




.

Thus Driver A’s equilibrium strategy consists of x0 =

[
1/2
1/2

]
, implying

that he chooses to drive straight or to swerve with equal probabilities

of
1

2
and that his payoff is z0,1 =

1

2
. Driver B’s strategy and payoff are

exactly the same.

If we instead calculate the KKT points of the quadratic programming
problem, we discover that there are exactly five:
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(a) w0 =




2
0
1
0
0
1




, with corresponding Lagrange multiplier vectors,λ0 =




1
0
0
1
0
1
1
0




and µ0 =

[
2
0

]
, and with objective value, f (w0) = 0

(b) w0 =




0
2
0
1
1
0




, with corresponding Lagrange multiplier vectors,λ0 =




0
1
1
0
1
0
0
1




and µ0 =

[
0
2

]
, and with objective value, f (w0) = 0

(c) w0 =




1/2
1/2
1/2
1/2
1/2
1/2




, with corresponding Lagrange multiplier vectors, λ0 =




1/2
1/2
1/2
1/2
0
0
0
0




and µ0 =

[
1/2
1/2

]
, and with objective value, f (w0) = 0
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(d) w0 =




1/4
5/4
1/4
3/4
3/4
1/4




, with corresponding Lagrange multiplier vectors, λ0 =




0
1
1
0
0
0
0
0




and µ0 =

[
0
1

]
, and with objective value, f (w0) =

1

4

(e) w0 =




5/4
1/4
3/4
1/4
1/4
3/4




, with corresponding Lagrange multiplier vectors, λ0 =




1
0
0
1
0
0
0
0




and µ0 =

[
1
0

]
, and with objective value, f (w0) =

1

4

The first two KKT points correspond to the two pure strategy equilibria
and the third KKT to the mixed strategy equilibrium. That these are so-
lutions of the original quadratic programming problem can be verified
by use of the bordered Hessian test. By mere inspection of objective val-
ues, we see that the latter two KKT points not solutions of the quadratic
programming problem. In fact, the bordered Hessian test is inconclu-
sive. Because these KKT points are not solutions of the problem, they
do not constitute Nash equilibria.

Solutions to Waypoints


