
Paul E. Fishback

Linear and Nonlinear
Programming with Maple:
An Interactive,
Applications-Based Approach

For Barb, Andy, and Margaret

Contents

List of Figures xiii

List of Tables xv

Foreword xix

I Linear Programming 1

1 An Introduction to Linear Programming 3
1.1 The Basic Linear Programming Problem Formulation 3

1.1.1 A Prototype Example: The Blending Problem 4
1.1.2 Maple’s LPSolveCommand 7
1.1.3 The Matrix Inequality Form of an LP 8
Exercises . 10

1.2 Linear Programming: A Graphical Perspective in R2 14
Exercises . 17

1.3 Basic Feasible Solutions . 20
Exercises . 25

2 The Simplex Algorithm 29

2.1 The Simplex Algorithm . 29
2.1.1 An Overview of the Algorithm 29
2.1.2 A Step-By-Step Analysis of the Process 30
2.1.3 Solving Minimization Problems 33
2.1.4 A Step-by-Step Maple Implementation of the Simplex

Algorithm . 34
Exercises . 38

2.2 Alternative Optimal/Unbounded Solutions and Degeneracy . 40
2.2.1 Alternative Optimal Solutions 40
2.2.2 Unbounded Solutions 41
2.2.3 Degeneracy . 43
Exercises . 45

2.3 Excess and Artificial Variables: The Big M Method 48
Exercises . 53

2.4 A Partitioned Matrix View of the Simplex Method 55
2.4.1 Partitioned Matrices . 55

vii

viii

2.4.2 Partitioned Matrices with Maple 56
2.4.3 The Simplex Algorithm as Partitioned Matrix Multipli-

cation . 57
Exercises . 62

2.5 The Revised Simplex Algorithm 64
2.5.1 Notation . 64
2.5.2 Observations about the Simplex Algorithm 65
2.5.3 An Outline of the Method 65
2.5.4 Application to the FuelPro LP 66
Exercises . 69

2.6 Moving beyond the Simplex Method: An Interior Point
Algorithm . 71
2.6.1 The Origin of the Interior Point Algorithm 71
2.6.2 The Projected Gradient 71
2.6.3 Affine Scaling . 74
2.6.4 Summary of the Method 77
2.6.5 Application of the Method to the FuelPro LP 78
2.6.6 A Maple Implementation of the Interior Point

Algorithm . 79
Exercises . 81

3 Standard Applications of Linear Programming 85
3.1 The Diet Problem . 85

3.1.1 Eating for Cheap on a Very Limited Menu 85
3.1.2 The Problem Formulation and Solution, with Help from

Maple . 86
Exercises . 89

3.2 Transportation and Transshipment Problems 90
3.2.1 A Coal Distribution Problem 90
3.2.2 The Integrality of the Transportation Problem Solution 91
3.2.3 Coal Distribution with Transshipment 93
Exercises . 95

3.3 Basic Network Models . 97
3.3.1 The Minimum Cost Network Flow Problem Formula-

tion . 97
3.3.2 Formulating and Solving the Minimum Cost Network

Flow Problem with Maple 99
3.3.3 The Shortest Path Problem 100
3.3.4 Maximum Flow Problems 102
Exercises . 104

4 Duality and Sensitivity Analysis 107
4.1 Duality . 107

4.1.1 The Dual of an LP . 107
4.1.2 Weak and Strong Duality 109

ix

4.1.3 An Economic Interpretation of Duality 114
4.1.4 A Final Note on the Dual of an Arbitrary LP 115
4.1.5 The Zero-Sum Matrix Game 116
Exercises . 120

4.2 Sensitivity Analysis . 124
4.2.1 Sensitivity to an Objective Coefficient 125
4.2.2 Sensitivity to Constraint Bounds 129
4.2.3 Sensitivity to Entries in the Coefficient Matrix A 134
4.2.4 Performing Sensitivity Analysis with Maple 137
Exercises . 139

4.3 The Dual Simplex Method . 142
4.3.1 Overview of the Method 142
4.3.2 A Simple Example . 143
Exercises . 147

5 Integer Linear Programming 149
5.1 An Introduction to Integer Linear Programming and the

Branch and Bound Method . 149
5.1.1 A Simple Example . 149
5.1.2 The Relaxation of an ILP 150
5.1.3 The Branch and Bound Method 151
5.1.4 Practicing the Branch and Bound Method with Maple . 158
5.1.5 Binary and Mixed Integer Linear Programming 159
5.1.6 Solving ILPs Directly with Maple 160
5.1.7 An Application of Integer Linear Programming: The

Traveling Salesperson Problem 161
Exercises . 166

5.2 The Cutting Plane Algorithm 172
5.2.1 Motivation . 172
5.2.2 The Algorithm . 172
5.2.3 A Step-by-Step Maple Implementation of the Cutting

Plane Algorithm . 176
5.2.4 Comparison with the Branch and Bound Method . . . 179
Exercises . 179

II Nonlinear Programming 181

6 Algebraic Methods for Unconstrained Problems 183
6.1 Nonlinear Programming: An Overview 183

6.1.1 The General Nonlinear Programming Model 183
6.1.2 Plotting Feasible Regions and Solving NLPs with Maple 184
6.1.3 A Prototype NLP Example 187
Exercises . 189

6.2 Differentiability and a Necessary First-Order Condition 192
6.2.1 Differentiability . 192

x

6.2.2 Necessary Conditions for Local Maxima or Minima . . 194
Exercises . 197

6.3 Convexity and a Sufficient First-Order Condition 199
6.3.1 Convexity . 199
6.3.2 Testing for Convexity 201
6.3.3 Convexity and The Global Optimal Solutions Theorem . . 203
6.3.4 Solving the Unconstrained NLP for Differentiable,

Convex Functions . 205
6.3.5 Multiple Linear Regression 206
Exercises . 209

6.4 Sufficient Conditions for Local and Global Optimal Solutions 212
6.4.1 Quadratic Forms . 212
6.4.2 Positive Definite Quadratic Forms 214
6.4.3 Second-order Differentiability and the Hessian Matrix 216
6.4.4 Using Maple To Classify Critical Points for the

Unconstrained NLP . 224
6.4.5 The Zero-Sum Matrix Game, Revisited 225
Exercises . 227

7 Numeric Tools for Unconstrained NLPs 231

7.1 The Steepest Descent Method 231
7.1.1 Method Derivation . 231
7.1.2 A Maple Implementation of the Steepest Descent

Method . 235
7.1.3 A Sufficient Condition for Convergence 237
7.1.4 The Rate of Convergence 240
Exercises . 242

7.2 Newton’s Method . 244
7.2.1 Shortcomings of the Steepest Descent Method 244
7.2.2 Method Derivation . 244
7.2.3 A Maple Implementation of Newton’s Method 247
7.2.4 Convergence Issues and Comparison with the Steepest

Descent Method . 248
Exercises . 253

7.3 The Levenberg-Marquardt Algorithm 255
7.3.1 Interpolating between the Steepest Descent and

Newton Methods . 255
7.3.2 The Levenberg Method 255
7.3.3 The Levenberg-Marquardt Algorithm 257
7.3.4 A Maple Implementation of the Levenberg-Marquardt

Algorithm . 258
7.3.5 Nonlinear Regression 261
7.3.6 Maple’s Global Optimization Toolbox 263
Exercises . 263

xi

8 Methods for Constrained Nonlinear Problems 267
8.1 The Lagrangian Function and Lagrange Multipliers 267

8.1.1 Some Convenient Notation 268
8.1.2 The Karush-Kuhn-Tucker Theorem 269
8.1.3 Interpreting the Multiplier 273
Exercises . 275

8.2 Convex NLPs . 279
8.2.1 Solving Convex NLPs 279
Exercises . 282

8.3 Saddle Point Criteria . 285
8.3.1 The Restricted Lagrangian 285
8.3.2 Saddle Point Optimality Criteria 287
Exercises . 289

8.4 Quadratic Programming . 292
8.4.1 Problems with Equality-type Constraints Only 292
8.4.2 Inequality Constraints 297
8.4.3 Maple’s QPSolveCommand 298
8.4.4 The Bimatrix Game . 300
Exercises . 305

8.5 Sequential Quadratic Programming 309
8.5.1 Method Derivation for Equality-type Constraints . . . 309
8.5.2 The Convergence Issue 314
8.5.3 Inequality-Type Constraints 315
8.5.4 A Maple Implementation of the Sequential Quadratic

Programming Technique 318
8.5.5 An Improved Version of the SQPT 320
Exercises . 323

A Projects 327
A.1 Excavating and Leveling a Large Land Tract 328
A.2 The Juice Logistics Model . 332
A.3 Work Scheduling with Overtime 336
A.4 Diagnosing Breast Cancer with a Linear Classifier 338
A.5 The Markowitz Portfolio Model 342
A.6 A Game Theory Model of a Predator-Prey Habitat 345

B Important Results from Linear Algebra 347
B.1 Linear Independence . 347
B.2 The Invertible Matrix Theorem 347
B.3 Transpose Properties . 348
B.4 Positive Definite Matrices . 348
B.5 Cramer’s Rule . 349
B.6 The Rank-Nullity Theorem . 349
B.7 The Spectral Theorem . 349
B.8 Matrix Norms . 350

xii

C Getting Started with Maple 351
C.1 The Worksheet Structure . 351
C.2 Arithmetic Calculations and Built-In Operations 353
C.3 Expressions and Functions . 354
C.4 Arrays, Lists, Sequences, and Sums 357
C.5 Matrix Algebra and the LinearAlgebra Package 359
C.6 Plot Structures with Maple . 363

D Summary of Maple Commands 371

Bibliography 391

Index 395

List of Figures

1.1 Feasible region for FuelPro LP. 15
1.2 Sample contour diagram produced by Maple. 16
1.3 LP with alternative optimal solutions. 17
1.4 Feasible region for FuelPro LP. 20
1.5 Feasible region for FuelPro LP. 23

2.1 Feasible region for LP 2.4. 40
2.2 Feasible region for a degenerate LP 2.5. 44
2.3 Feasible region for Exercise 5. 47
2.4 Feasible region for foraging herbivore LP, (2.6). 50
2.5 Commuting diagram illustrating change of variables. 76
2.6 Interior algorithm iterates for FuelPro LP. 81

3.1 Two nodes in the minimum cost flow problem. 97
3.2 Five-node network with corresponding outflow numbers,

costs, and flow capacities. 99
3.3 Driving distances between various cities. 101
3.4 Wastewater flow diagram. 103

4.1 Feasible region for FuelPro LP along with contour z = 46. . . . 125
4.2 Ordered pairs (δ1, δ2) for which changes in the first two con-

straints of FuelPro LP leave the basic variables, {x1, s1, x2}, un-
changed. 134

4.3 Feasible region for LP (4.34). 144

5.1 Feasible region and solution for the GLKC ILP relaxation. . . . 151
5.2 Branching on x1 in the feasible region of the relaxation LP. . . 153
5.3 Tree diagram for ILP (5.1). 157
5.4 Tree diagram for MILP (5.11). 160
5.5 Tour consisting of 4 destinations. 162
5.6 Two subtours of 4 destinations. 163

6.1 Feasible region for NLP (6.2). 185
6.2 Feasible region and contour shading for NLP (6.2). 186
6.3 Surface plot of f (x1, x2) = x3

1 − 3x1x2
2. 197

6.4 Graph of f (x) = |x| 32 . 199

xiii

xiv

6.5 The paraboloid f (x1, x2) = x2
1 + x2

2, together with one chord
illustrating notion of convexity. 201

6.6 The paraboloid f (x1, x2) = x2
1 + x2

2, together with the lineariza-
tion, or tangent plane, at an arbitrary point. 204

6.7 Surface plot of ConPro objective function. 206
6.8 The quadratic form f (x1, x2) = 2x2

1 + 2x1x2 + 3x2
2. 213

6.9 Quadratic form f (x1, x2) = −2x2
1 + 2x1x2 − 3x2

2. 214

6.10 Quadratic form f (x1, x2) = x2
1 + 4x1x2 + x2

2. 215

7.1 One depiction of φ(t) = f
(
x0 − t∇ f (x0)

)
. 233

7.2 A plot of φ(t) = f
(
x0 − t∇ f (x0)

)
. 233

7.3 The lower level set S0 =
{
x | f (x) ≤ f (10, 10)

}
. 239

7.4 Steepest descent approximations xk, k = 0, 1, 2, 3 for

f (x1, x2) = x2
1 + x1x2 +

3

2
x2

2 + x1 − 4x2 + 6, along with scaled

optimal descent directions. 244
7.5 Illustration of optimal descent and Newton directions for

f (x1, x2) = x2
1 + x1x2 +

3

2
x2

2 + x1 − 4x2 + 6 starting at x0. 245

7.6 Rosenbrock’s valley function. 253
7.7 Plot of ConPro Manufacturing Company production data,

together with best-fit Cobb-Douglass function P(x1, x2) =
x.510

1 x.320
2 . 262

8.1 Feasible region of the ConPro Manufacturing Company NLP il-
lustrating objective and constraint gradients at the solution,
x0. 274

8.2 Quadratic form, f , together with the image under f of the line
x1 − x2 = 1. 294

8.3 Graph of φ(t) =M(x1 + t∆x). 322

A.1 Land tract site consisting of eight rectangles forming three
planes. 331

A.2 Hyperplane consisting of a solid line that separates two classes
of training vectors, circles and boxes, in R2. 338

C.1 Sample plot of a function of one variable. 364
C.2 Sample plot of a function of two variables. 365
C.3 Sample plot of three functions of a single variable. 366
C.4 Example of a plotted relation. 367
C.5 Example of plotted points. 368
C.6 Plot of region satisfying list of linear inequalities. 369
C.7 Superposition of two plot structures. 369

List of Tables

1.1 FuelPro production data . 4
1.2 Dietary data for vole . 12

2.1 Initial tableau for FuelPro Petroleum problem 29
2.2 Tableau after first iteration . 31
2.3 Tableau after second iteration 32
2.4 Tableau after third iteration . 32
2.5 Initial tableau for minimization LP (2.2) 34
2.6 Tableau after first iteration for minimization LP (2.2) 34
2.7 LP (2.4) after one iteration . 41
2.8 Example tableau similar to 2.2 42
2.9 Tableau for a standard maximization problem 42
2.10 Initial tableau for 2.5 . 43
2.11 Tableau after first iteration for 2.5 44
2.12 Tableau after second iteration for 2.5 45
2.13 Tableau for Exercise 3 . 46
2.14 Tableau for LP having objective function z = f (x1, x2) = x1 + 3x2 46
2.15 Data for Foraging Herbivore model 48
2.16 BV = {s1, a2, a3} . 51
2.17 BV = {s1, a2, a3} . 52
2.18 BV = {x1, s1, a3} . 52
2.19 BV = {x1, s1, e2} . 52
2.20 BV = {x1, x2, e2} . 53
2.21 Initial tableau for FuelPro LP . 57
2.22 Initial tableau for FuelPro Petroleum problem 66
2.23 Results of applying the interior point algorithm to the FuelPro

LP . 80

3.1 Sandwich nutritional data . 85
3.2 Daily nutritional guidelines . 86
3.3 Sandwich sodium amounts . 89
3.4 Mine-city transportation costs 90
3.5 Mine-railyard transportation costs 94
3.6 Railyard-city transportation costs 94
3.7 Market demand for corn and soy, measured in tons 96

xv

xvi

3.8 Maximum number of outpatient admissions of each therapy
type at each clinic . 105

4.1 General form of simplex tableau for LP (4.1) 110
4.2 Final tableau for FuelPro dual LP after being solved with the

Big M Method . 112
4.3 Top rows of tableau for iterations of primal FuelPro LP (The z

column has been omitted) . 112
4.4 Guide to the general dual formulation 115
4.5 Tableau for Exercise 4 . 121
4.6 Tableau for Exercise 6 . 122
4.7 FuelPro Petroleum Companyfinal tableau, (BV = {x1, x2, s1}) . . . 124
4.8 Fuelpro tableau under changed premium cost 126
4.9 Fuelpro tableau under changed premium cost and after addi-

tional pivot . 127
4.10 Final tableau for three-variable LP (4.21) 127
4.11 Final tableau for modification of three-variable LP (4.21) . . . 127
4.12 Final tableau for original FuelPro LP 131
4.13 Final tableau for sample maximization LP 132
4.14 Fuelpro tableau after adjustment to coefficient of A correspond-

ing to a basic variable . 136
4.15 Updated Fuelpro final tableau after adjusting coefficient of x2

in third constraint . 136
4.16 BV = {s1, s2, s3} . 143
4.17 BV = {x2, s2, s3} . 145
4.18 BV = {x1, x2, s3} . 145
4.19 FuelPro tableau after addition of new constraint 146
4.20 Updated tableau after pivots are performed 146
4.21 Updated tableau after one dual-simplex iteration 146

5.1 Distances between towns for Jane’s bicycle ride 166
5.2 Weight and nutritional data taken from manufacturer’s web

sites . 168
5.3 Pitching data for Coach Anderson’s team 168
5.4 Example of a 4-by-4 Sudoku puzzle 169
5.5 Final tableau of the GLKC ILP relaxation 172
5.6 Tableau for the relaxation after a new slack variable, s3, has

been introduced . 174
5.7 Tableau after the first iteration of the cutting plane algorithm . 175
5.8 Tableau for the relaxation after a new slack variable, s4, has

been introduced . 175
5.9 Tableau for the GLKC ILP after second iteration of cutting

plane algorithm . 176

6.1 Cigarette data . 207

xvii

6.2 Body measurement data . 211

7.1 Results of Steepest Descent Method applied to
f (x1, x2) = x2

1
+ x1x2 +

3
2 x2

2
+ x1 − 4x2 + 6 235

7.2 Results of the Steepest Descent Method applied to the ConPro
objective function, f , from (7.7) 240

7.3 Objective output differences . 242
7.4 Error between xk and x⋆ . 242
7.5 Results of the Steepest Descent and Newton’s Methods applied

to the ConPro objective function 252
7.6 Results of Levenberg-Marquardt Algorithm applied to the un-

constrained ConPro Manufacturing Company NLP with a toler-
ance of ǫ = .01, λ = .0001, and ρ = 10 258

7.7 Production data for ConPro Manufacturing Company 261
7.8 Sunflower growth data . 264
7.9 Time-intensity data for pulsed-laser experiment 266

8.1 Blood types produced by different allele pairs 307
8.2 Results of the Sequential Quadratic Programming Technique

applied to NLP (8.59) . 313

A.1 Training set . 339
A.2 Field data used to determine payoffmatrices 345

Foreword

This book is designed for use as a primary text in an introductory course,
or sequence of courses, on linear and nonlinear programming. Its intended
audience consists of undergraduate students who have completed both a
standard single-variable calculus sequence, along with an introductory linear
algebra course. Although some background knowledge of multivariable cal-
culus (primarily partial derivatives) and some experience with formal proof
writing are helpful, they are by no means essential.

The book itself is organized into two parts, with the first focusing on lin-
ear programming and the second on nonlinear programming. Following
these two parts are four appendices, which contain course projects, Maple
resources, and a summary of important linear algebra facts.

Focus on Linear Algebra

A primary goal of this book is to “bridge the gap,” so to speak, which separates
the two primary classes of textbooks on linear and nonlinear programming
currently available to students. One consists of those management science
books that lack the level of mathematical detail and rigor this text seeks to
attain. Typically, they assume little to no linear algebra background knowl-
edge on the part of the reader. Texts in the second class are better suited for
graduate level courses on mathematical programming. In simple terms, they
are written at “too high a level” for this book’s intended audience.

Undergraduate students who use this book will be exposed early to topics
from introductory linear algebra, such as properties of invertible matrices
and facts regarding nullspaces. Eigenvalues, of course, are an essential for
the classification of quadratic forms. Most important, however, is the extent
to which partitioned matrices play a central role in developing major ideas.
In particular, the reader discovers in Section 2.4 that the Simplex Algorithm
may be viewed entirely in terms of multiplication of such matrices. This per-
spective from which to view the algorithm provides streamlined approaches
for constructing the Revised Simplex Method, developing duality theory, and
approaching the process of sensitivity analysis.

Some linear algebra topics arising in this text are not ones usually encountered
by students in an introductory course. Most notable are certain properties of

xix

xx

the matrix transpose, the Spectral Theorem, and facts regarding matrix norms.
As these topics arise in the text, brief digressions summarize key ideas, and
the reader is referred to appropriate locations in the appendices.

Maple

As the title indicates, Maple is the software of choice for this text. While
many practitioners in the field of mathematical programming do not con-
sider Maple well-suited for large-scale problems, this software is ideal in
terms of its ability to meet the pedagogical goals of this text and is acces-
sible to students at over 90% of advanced research institutions worldwide.
By combining Maple’s symbolic computing components, its numeric capa-
bilities, its graphical versatility, and its intuitive programming structures, the
student who uses this text should acquire a deep conceptual understanding of
major mathematical programming principles, along with the ability to solve
moderately-sized real world applications.

The text does not assume prior Maple experience on the part of its reader.
The Maple novice should first read Appendix B, Getting Started with Maple.
It provides a sufficient amount of instruction for the reader unfamiliar with
this software, but no more than that needed to start reading Chapter 1. Maple
commands are then introduced throughout the book, as the need arises, and
a summary of all such commands is found in Appendix 4. Finally, sample
Maple work sheets are provided in the text itself and are also accessible online
at www.lp-nlp-with-maple.org.

Waypoints

Any mathematics text should strive to engage its reader. This book is no
exception, and, hopefully, it achieves success in this regard. Interspersed
throughout are “Waypoints,” where the reader is asked to perform a simple
computation or to answer a brief question, both of which are designed to
assess his or her understanding. The intent of these Waypoints is to facilitate
the “hands-on,” or interactive, learning approach suggested by this book’s
title. The instructor can utilize them in various ways, for example, by using
them as a means to intersperse lecture with small-group discussions or as an
additional source of text exercises.

Projects

In addition to Waypoints and numerous exercises, both computational and
conceptual in nature, this text includes six substantial projects, which are
given in Appendix A. Three of the six focus on linear programming models:
Two transportation-related problems and one integer linear programming
problem on work scheduling. The remaining three focus on nonlinear pro-
gramming: A linear classifier problem for cancer diagnosis, the Markowitz

xxi

portfolio model, and a bimatrix game theory representation of a predator-prey
habitat. These six projects provide the student opportunities to investigate
real-world applications more substantial than those found in the exercises.
They are well-suited for use in a class in which students complete team
projects designed to reinforce their problem solving and mathematical com-
munication skills. Maple is indispensable for addressing the problems posed
by the projects, and students can easily produce reports consisting of Maple
work sheets that combine the software’s text- and math-input environments.

Possible Course Outlines

There are several different possible outlines for using this book as a primary
course text, depending upon course goals and instructional time devoted to
the various topics. In terms of linear programming, core topics include Chap-
ter 1, Sections 2.1-2.4, Chapter 3, Sections 4.1-4.2, and Section 5.1. These cover
the essentials of linear programming, basic applications, duality, sensitivity
analysis, and integer linear programming via the branch and bound method.
Sections 2.5, 4.3, and 5.2 address optional topics, namely the interior point
algorithm, the dual simplex method, and the cutting plane algorithm, re-
spectively. When considering which of these three additional topics to cover,
however, the instructor should bear in mind that the cutting plane algorithm
requires use of the dual simplex method.

For a follow-up course on nonlinear programming, core topics include Chap-
ter 6, Sections 7.1-7.2, and Sections 8.1-8.2. These cover the basics of uncon-
strained optimization, the Steepest Descent Method, Newton’s Method, the
Karush-Kuhn-Tucker Necessary Conditions Theorem, and convex nonlin-
ear programming. Optional topics found in Sections 7.3, 8.3-8.5 include the
Levenberg-Marquardt Algorithm, saddle point criteria, quadratic program-
ming, and sequential quadratic programming.

Acknowledgements

I am extremely grateful to the many individuals who provided me assistance
as I wrote this book. Not having previously undertaken such a task, I sought
general advice from numerous colleagues: Edward Aboufadel, Matthew
Boelkins, Jonathan Hodge, and Theodore Sundstrom (all at Grand Valley
State University); Larry Knop (Hamilton College); Anne Young (Loyola Col-
lege of Maryland). Their advice, along with the guidance of Bob Stern from
Taylor and Francis, made the process of completing this text run smoothly.

Numerous students and colleagues helped me improve specific portions of
the manuscript as I piloted it in classes at Grand Valley State University.
More than anyone, my colleague Clark Wells has been a valuable source of

xxii

information and advice, both in terms of writing this book and also with
regards to teaching mathematical programming in general.

My family exhibited enormous patience over the four-year period I devoted
to writing this text, and they are likely quite relieved that the task is complete.
Finally, I am deeply indebted to Dr.’s Kost Elisevich, Brien Smith, and Timothy
Thoits.

Part I

Linear Programming

1

Chapter 1

An Introduction to Linear Programming

1.1 The Basic Linear Programming Problem Formulation

Any student who has completed a first-semester calculus course recalls solv-
ing optimization problems. A contrived, yet typical example of such is given
by the following:

Farmer Smith has 100 yards of fence to build a rectangular cor-
ral, one of whose sides will consist of the side of a barn. What
should be the dimensions of the corral if Farmer Smith wishes to
maximize the possible enclosed area?

Of course, the calculus provides one means of solving this problem. If we let
x and y denote the dimensions of the corral, then the available fence length
dictates 2x + 2y = 100, and the area, A, is given by A = xy. Rewriting A as a

function of a single variable, say x, and solving the equation,
dA

dx
= 0, for x,

we deduce that Farmer Brown maximizes the enclosed area by using 50 feet
of fence opposite the barn and 25 feet for each of the opposite two sides.

Linear programming, the main focus of this chapter, is another optimiza-
tion tool having components analogous to those of the preceding calculus
problem. First, there is a function to be maximized or minimized. Whereas
in calculus, one works with smooth functions of a single variable, linear
programming involves optimizing linear functions of several variables. In
calculus, one frequently constrains the input values of the function to fall
within a certain interval. In linear programming, input values must satisfy
several constraints, each of which takes the form of a linear inequality. Cal-
culus optimization problems rely upon the derivative; linear programming
utilizes linear algebra as a tool. The goal of Part I of this text is to expand
upon these ideas and to apply them to solve a variety of real-world linear
programming problems.

3

4 Chapter 1. An Introduction to Linear Programming

1.1.1 A Prototype Example: The Blending Problem

One sector of the economy that has made extensive use of linear programming
is the petroleum industry. Texaco, for example, used linear programming to
address blending problems in the early 1980s; doing so saved the company
an estimated $30 million per year [11]. The idea of a blending problem is
fairly simple. A company produces various grades of gasoline, e.g., regu-
lar unleaded, mid-grade, and premium, which have various octane ratings.
Various stocks are used to produce these grades. Such stocks are the interme-
diate products produced by the refineries and include straight-run gasoline,
formate, and catalytic gasoline. The question becomes, given a particular
quantity the company wishes to optimize, e.g., revenue earned on the vari-
ous gasoline grades, how does it do so while satisfying numerous constraints
on stock demand and quality specifications?

A fictitious, yet simple and illuminating example used throughout this chap-
ter is that of the FuelPro Petroleum Company, a small refinery that sells two
grades of fuel, premium and regular unleaded. For purposes of simplicity, we
will assume that only two stocks, stock A and stock B, are used to produce the
two grades and that 28 and 32 gallons of each stock, respectively, are avail-
able. The following table summarizes how much of each stock is required for
each grade. (Assume all quantities are measured in gallons.)

TABLE 1.1: FuelPro production data

Stock Premium Reg. Unleaded Available Stock
Type A 2 2 28
Type B 3 2 32

Production facility limitations dictate that at most 8 gallons of premium grade
fuel can be made available each hour. The net profit per gallon of premium
grade is $.40 and that of regular unleaded is $.30. FuelPro is fortunate to sell
all the fuel it refines.

Some logical questions the company might wish to address are the following:

1. What are the possible production combinations of fuel types that will
satisfy the above conditions or set of constraints?

2. What combinations of fuel types will maximize FuelPro ’s profit?

3. How sensitive is the answer to the preceding question to the various
parameters in the model? For example, by how much will the price of
unleaded regular need to change before the optimal fuel production
combination from (2) will change as well?

1.1. The Basic Linear Programming Problem Formulation 5

Linear programming is a powerful tool for addressing such questions!

_ _

Waypoint 1.1.1. In the preceding example, experiment and list four
combinations of premium and regular unleaded fuel types, three of
which satisfy the listed constraints and one of which does not. Of
those three that do, which produces the largest profit?

_ _

Mere experimentation with points as a means of determining the combination
of fuel types that maximizes profit for FuelPro naturally leads to the question
of whether there is a mathematically more systematic approach to solving
this problem. In this section we take a first step toward developing such an
approach by introducing basic terminology and by interpreting the problem
situation using the language of multivariate functions and linear algebra.

Let us denote the number of gallons of premium grade and regular unleaded
produced in a given hour by the variables x1 and x2, respectively. Using
information regarding the production of the two fuel grade types, we can
construct inequalities relating these two variables.

1. From information provided in the first row of Table 1.1, we know that
each gallon of premium requires 2 gallons of stock A and each gallon
of regular unleaded requires 2 gallons of stock A. Since only 28 gallons
of stock A are available to FuelPro each hour, we obtain the inequality:

2x1 + 2x2 ≤ 28.

2. By similar reasoning, the maximum availability of stock B dictates that

3x1 + 2x2 ≤ 32.

3. At most 8 gallons of premium grade fuel can be sold each hour. Thus
x1 ≤ 8.

4. Only nonnegative values of x1 and x2 make sense for the problem situ-
ation. Therefore, x1, x2 ≥ 0.

FuelPro desires to maximize its profit subject to the preceding constraints.
Given the profit per gallon amounts for the premium and unleaded fuels, the
function to be maximized is simply .4x1 + .3x2. For the mere sake of working
with integer-valued coefficients, we shall instead maximize

z = f (x1, x2) = 4x1 + 3x2.

6 Chapter 1. An Introduction to Linear Programming

Combining this function with the above constraints, the optimization problem
faced by FuelPro can be written as follows:

maximize z = f (x1, x2) = 4x1 + 3x2 (1.1)

subject to

x1 ≤ 8

2x1 + 2x2 ≤ 28

3x1 + 2x2 ≤ 32

x1, x2 ≥ 0.

System (1.1) is an example of a linear programming problem (LP).

Definition 1.1.1. A linear programming problem is a mathematical problem
that consists of the following components:

1. An objective function, f , of n decision variables, x1, x2, . . . , xn, that is to be
maximized or minimized. This function is linear; that is it can be written
in the form

z = f (x1, x2, . . . , xn) = c1x1 + c2x2 + · · · + cnxn, (1.2)

where each ci belongs to R.

2. A set of m constraints or inequalities. Each constraint is linear in that it
takes the form,

ai1x1 + ai2x2 + · · · + ainxn ≤ bi, (1.3)

where 1 ≤ i ≤ m and where each ai j and bi belongs to R.

3. Possible sign restrictions placed on any of the decision variables.

We will define the vector x =

x1

x2

...
xn

in Rn to be a feasible solution of the LP if it

satisfies all constraints and sign restrictions of the LP. The feasible region is the
set of all feasible solutions, and an optimal solution is a feasible solution whose
corresponding objective function value is greater than or equal to that of any
other feasible solution for a maximization problem and less than or equal to
that of any other feasible solution for a minimization problem.

While Definition 1.1.1 appears to stipulate that all constraints are of inequality
type, equations are permissible as well, as long as the constraint equations are
linear in the variables x1, x2, . . . , xn. However, in Section 1.1.3 we will discover
how the set of constraints of any LP can be expressed entirely in terms of
inequalities.

1.1. The Basic Linear Programming Problem Formulation 7

It is important to note that any LP has hidden assumptions due to its linear
nature. For example, in our petroleum model we assume that there is no
interaction between the amounts of premium and regular unleaded, e.g.,
no product terms x1x2. We are also assuming that the objective function is
linear. In certain other situations, the function f might be better modeled by
a quadratic function, in which case the problem is not an LP but a quadratic
programming problem. Finally, we are assuming that the decision variables
can take on fractional, noninteger values, which may not always be realistic
for the application at hand. In Chapter 5 we discuss problems in which we
desire only integer-valued solutions for one or more of our decision variables.

1.1.2 Maple’s LPSolve Command

Maple’s Optimization package provides a convenient means for solving an
LP such as (1.1). A simple worksheet for doing so is given as follows:

> restart;

> with(Optimization);

[ImportMPS, Interactive, LPSolve, LSSolve,Maximize,Minimize,NLPSolve,QPSolve]

> f:=(x1,x2)->4*x1+3*x2;

f := (x1, x2)→ 4x1 + 3x2

> constraints:=[x1<=8,2*x1+2*x2<=28,3*x1+2*x2<=32];

constraints := [x1 ≤ 8, 2x1 + 2x2 ≤ 28, 3x1 + 2x2 ≤ 32]

> LPSolve(f(x1,x2),constraints,‘maximize’, assume=nonnegative);

[46., [x1 = 4.000000000, x2 = 9.999999999]]

Maple’s LPSolve command yields a floating-point representation of the op-
timal solution, x1 = 4 and x2 = 10, which corresponds to an objective value
z = f (4, 10) = 46. Hence, FuelPro should produce 4 gallons of premium grade
and 10 gallons of regular unleaded each hour in order to maximize its profit,
which equals $ 4.60.

The general form of the LPSolve command is given by

LPSolve(objective function ,list of constraints,options).

If no options are given, Maple minimizes the objective function by default
and makes no assumptions regarding sign values of decision variables. In
the preceding example, we have added options that maximize the objective
function and require nonnegative decision variables. Doing so guarantees

8 Chapter 1. An Introduction to Linear Programming

that LPSolve obtains a solution coinciding with that of (1.6). In subsequent
sections, we will elaborate on features of this command and how it can be
used to solve more complicated problems.

In the FuelPro example, the LP has a unique optimal solution, x1 = 4 and
x2 = 10. As we shall discover in Section 1.2, the solution of any LP takes one
of four general forms:

1. The LP can be infeasible, meaning that its feasible region is the empty
set.

2. The LP can have a unique optimal solution.

3. The LP can have more than one optimal solution, in which case we say
that it has alternative optimal solutions.

4. The LP can be unbounded. For a problem in which one seeks to maximize
the objective function, this means that the objective function can be
made as large as one likes. For a minimization problem, this means that
the objective function can be made as small as one likes.

When an LP is infeasible, Maple’s LPSolve command returns an error mes-
sage, and when the LP is unbounded, Maple returns a feasible solution along
with a warning message. When an LP has more than one solution, Maple
returns one solution, overlooking the others.

1.1.3 The Matrix Inequality Form of an LP

Matrix notation provides a convenient means for restating a linear program-
ming problem such as (1.1) in more compact form. Let us denote the matrix

A =

1 0
2 2
3 2

and the vectors c =
[
4 3

]
, b =

8
28
32

, and x =

[
x1

x2

]
. Then (1.1) becomes

maximize z = c · x (1.4)

subject to

Ax ≤ b

x ≥ 0.

In this notation, a vector inequality such as Ax ≤ b means that the inequality
is valid for every pair of corresponding entries in the vectors. We shall refer
to (1.4) as the matrix inequality form of the LP.

1.1. The Basic Linear Programming Problem Formulation 9

Maple’s LPSolve command accepts LP’s expressed in matrix inequality form.
For example (1.4), can be solved as follows:

> c:=Vector[row]([4,3]);

c :=
[
4 3

]

> A:=Matrix(3,2,[1,0,2,2,3,2]);

A :=

1 0
2 2
3 2

> b:=<8,28,32>;

b :=

8
28
32

> LPSolve(c, [A, b], assume = nonnegative,’maximize’);
[
46

[
4
10

]]

Observe that Maple’s output consists of a list. The first entry is the optimal
objective value; the second entry is the corresponding vector of decision
variable values.

Through simple algebraic manipulations, we can express every LP in in-
equality form. For example, the LP given in (1.5) has constraints involving
inequalities and equations.

maximize z = f (x1, x2) = 2x1 + 3x2 (1.5)

subject to

x1 + x2 ≤ 6

x1 + 5x2 ≥ 10

2x1 − x2 = 3

x1, x2 ≥ 0.

The second constraint can be rewritten as −x1 − 5x2 ≤ −10. The third is the
combination of two constraints, 2x1 − x2 ≤ 3 and −2x1 + x2 ≤ −3. Thus, (1.5)
becomes

maximize z = c · x
subject to

Ax ≤ b

x ≥ 0,

10 Chapter 1. An Introduction to Linear Programming

where A =

1 1
−1 −5
2 −1
−2 1

, c =

[
2 3

]
, b =

6
−10

3
−3

, and x =

[
x1

x2

]
.

Exercises in this section demonstrate other means for expressing LPs in matrix
inequality form, including those containing variables unrestricted in sign or
those whose constraints involve absolute values.

Exercises Section 1.1

1. Express each LP below in matrix inequality form. Then solve the LP
using Maple provided it is feasible and bounded.

(a)

maximize z = 6x1 + 4x2

subject to

2x1 + 3x2 ≤ 9

x1 ≥ 4

x2 ≤ 6

x1, x2 ≥ 0

(b)

maximize z = 3x1 + 2x2

subject to

x1 ≤ 4

x1 + 3x2 ≤ 15

2x1 + x2 = 10

x1, x2 ≥ 0

(c)

maximize z = −x1 + 4x2

subject to

−x1 + x2 ≤ 1

x1 + ≤ 3

x1 + x2 ≥ 5

x1, x2 ≥ 0

1.1. Exercises Section 1.1 11

(d)

minimize z = −x1 + 4x2

subject to

x1 + 3x2 ≥ 5

x1 + x2 ≥ 4

x1 − x2 ≤ 2

x1, x2 ≥ 0

(Hint: First change the LP so that the goal is “maximize” z̃ = −z =
x1 − 4x2.)

(e)

maximize z = 2x1 − x2

subject to

x1 + 3x2 ≥ 8

x1 + x2 ≥ 4

x1 − x2 ≤ 2

x1, x2 ≥ 0

(f)

minimize z = 2x1 + 3x2

subject to

3x1 + x2 ≥ 1

x1 + x2 ≤ 6

x2 ≥ 0

(Hint: The variable x1 is unrestricted in sign. Define x1 = x1,+−x1,−,
where x1,+ and x1,− are nonnegative. Express the LP in terms of the
three nonnegative decision variables, x2, x1,+ and x1,−.)

2. In certain situations an optimization problem may not appear to be an
LP, such as the case when constraints involve certain absolute value
inequalities. For example, consider the following problem:

minimize z = x1 + 4x2

subject to

x1 + 2x2 ≤ 5

|x1 − x2| ≤ 2

x1, x2 ≥ 0.

By restating the absolute value constraint as a combination of two linear
constraints, show that this problem is in fact an LP. Write the LP in matrix
inequality form, and determine its solution using Maple.

12 Chapter 1. An Introduction to Linear Programming

3. Congratulations! Upon graduating from college, you’ve immediately
been offered a high-paying position as president of the Lego Furniture
Company.1 Your company produces chairs (each requiring 2 square
blocks and 1 rectangular block) as well as tables (each requiring 2 square
blocks and 2 rectangular blocks) and has available resources consisting
of 8 rectangular blocks and 6 square ones. Assume chairs and tables
each sell for $5 and $7, respectively, and that your company sells all of
what it produces.

(a) Set up an LP whose objective is to maximize your company’s
revenue. Solve this LP through trial and error, using your Legos if
you wish.

(b) Now solve the LP with the aid of Maple.

4. (The Foraging Herbivore Model) In certain parts of the U.S. the vole, or
common field mouse, is an herbivore whose diet consists predomi-
nantly of grass and a type of broad-leafed herb known as forb. Research
suggests that the vole searches for food in a manner that minimizes its
total foraging time, subject to a set of two constraints. 2

Table 1.2 summarizes grass and forb data regarding digestive capacity
and energy content. Food bulk records the extent to which the mass of
a substance increases after it enters the digestive system and becomes
liquid-saturated. For example, two grams of grass, when consumed,
expands to 2× 1.64 = 3.28 grams within the digestive system. To distin-
guish the mass of food prior to consumption from that in the digestive
system, we use units of gm-dry and gm-wet, respectively.

TABLE 1.2: Dietary data for vole

Food bulk (gm-wet/gm-dry) Energy content (kcal/gm)

Grass 1.64 2.11
Forb 2.67 2.30

The digestive capacity of the vole is 31.2 gm-wet per day, and the vole
must consume enough food to meet an energy requirement of at least
13.9 kcal per day. Assume that the vole’s foraging rate is 45.55 minutes
per gram of grass and 21.87 minutes per gram of forb.

(a) Let x1 and x2 denote the number of grams of grass and number of
grams of forb, respectively, consumed by the vole on a given day.

1Based upon Pendegraft, [37], (1997). For this problem it helps to have some Legos, specifically
8 large rectangular blocks and 6 small square blocks.

2Based upon Belovsky, [5], (1984).

1.1. Exercises Section 1.1 13

Construct an LP that minimizes the vole’s total daily foraging time
given the digestive capacity and energy constraints. Verify that
your units make sense for each constraint and for your objective
function. Then write this LP in matrix inequality form.

(b) Solve the LP using Maple.

14 Chapter 1. An Introduction to Linear Programming

1.2 Linear Programming: A Graphical Perspective in R2

In Section 1.1 we formulated the FuelPro problem and obtained its solution
with the aid of Maple’s Optimizationpackage. Now we develop a graphical
approach for obtaining the same solution, one that provides deeper insight
into the nature of the solutions to LPs in general. Recall the FuelPro problem:

maximize z = f (x1, x2) = 4x1 + 3x2 (1.6)

subject to

x1 ≤ 8

2x1 + 2x2 ≤ 28

3x1 + 2x2 ≤ 32

x1, x2 ≥ 0.

The points in the x1x2-plane that satisfy all the constraints and sign conditions
in (1.6) form the feasible region for the FuelPro model.

_ _

Waypoint 1.2.1. Sketch and shade the graph of the feasible re-
gion in the x1x2-plane. While this task is easily accomplished by
hand, Maple can also do so through the use of the inequal com-
mand as described in Appendices C and D. The list of inequalities
used within this command is given by [x1<=8, 2*x1+2*x2<=28,
3*x1+2*x2<=32,x1>=0,x2>=0] . The resulting graph should resem-
ble that in Figure 1.1

_ _

The function f = 4x1 + 3x2 from (1.6) is a multivariate function whose graph
consists of a surface inR3. Recall that a contour or level curve of such a function
is a curve in the x1x2-plane that results from holding z constant. In other words,
it is a curve that results from slicing the surface with a horizontal plane of the
form z = c, where c is a constant. A contour diagram is merely a collection of
contours plotted on a single set of axes.

Maple produces contour diagrams through its contourplot command,
located in the plots package. The general form of the command is
contourplot(expression in x1 and x2,x1=a..b,x2=c..d,options). Var-
ious options include specifying the output values used for the contours,
specifically via contours=L, where L is a list of contour values. Figure 1.2 il-
lustrates an example, using the expression x2

1 + x2
2, along with contour values

of 0, 1, 2, 3, and 4:

1.2. Linear Programming: A Graphical Perspective in R2 15

x1

x2

FIGURE 1.1: Feasible region for FuelPro LP.

> contourplot(x1ˆ2+x2ˆ2,x1=-3..3,x2=-3..3,contours=[1,2,3,4]);

For the FuelPro problem, the objective function f is a linear function of two
variables so that its contours form parallel lines.

_ _

Waypoint 1.2.2. Superimpose on your feasible region from the previ-
ous Waypoint the graphs of several contours of the objective function
f (x1, x2) = 4x1+ 3x2. (Recall from Appendices C and D that plot struc-
tures can be superimposed by use of the display command.) Then
use these contours to determine the amounts of premium and regular
unleaded fuel types in the feasible region that correspond to the max-
imum profit. Your solution should of course agree with that obtained
by using the LPSolve command in Section 1.1.

_ _

Recall from Section 1.1 that the solution of an LP can take one of four possible
forms.

1. The LP can be infeasible, meaning that its feasible region is the empty
set.

16 Chapter 1. An Introduction to Linear Programming

FIGURE 1.2: Sample contour diagram produced by Maple.

2. The LP can have a unique optimal solution, as is the case for the FuelPro
problem.

3. The LP can have alternative optimal solutions. That is, there exists at least
two optimal solutions.

4. The LP can be unbounded. For a problem in which one seeks to maximize
the objective function, this means that the objective function can be
made as large as one likes. For a minimization problem, this means that
the objective function can be made as small as one likes.

While constraints and sign conditions alone determine whether an LP is
infeasible, contours provide a graphical means for determining whether an
LP has alternative optimal solutions or is unbounded. The LP in (1.7) provides
one such example.

maximize z = f (x1, x2) = 6x1 + 4x2 (1.7)

subject to

3x1 + 2x2 ≤ 18

x1 ≤ 4

x2 ≤ 6

x1, x2 ≥ 0.

1.2. Exercises Section 1.2 17

The feasible region for (1.7), together with objective function contours z = 32,
z = 34 and z = 36, is shown in Figure 1.3.

0

1

2

3

4

5

6

7

1 2 3 4 5

z=32

z=34

x2

x1

z=36

FIGURE 1.3: LP with alternative optimal solutions.

In this example, contours of the objective function f are parallel to the bound-
ary of the constraint 3x1 + 2x2 ≤ 9. Moreover, objective values corresponding
to these contours illustrate how all points on the segment from (2, 6) to (4, 3)
yield the same optimal objective value, z = 36. One way to represent this
segment is through a parametric representation as follows:

(x1, x2) = t · (2, 6)+ (1 − t) · (4, 3) = (4 − 2t, 3+ 3t), where 0 ≤ t ≤ 1.

The preceding example illustrates how contours can be used to identify an
LP having alternative optimal solutions. Namely, such solutions arise when
the contour that intersects the feasible region and corresponds to the optimal
objective value also contains a segment of the feasible region boundary. That
contours can also be used to identify unbounded LPs is left as an exercise.

Exercises Section 1.2

1. For each LP below, graph the feasible region, and sketch at least three
contours of the objective function. Use your contours to determine the
nature of the solution. If the LP has a unique optimal solution, list the
values of the decision variables along with the corresponding objective

18 Chapter 1. An Introduction to Linear Programming

function value. If the LP has alternative optimal solutions, express the
general solution in parametric form. You may wish to combine Maple’s
inequal, contourplot, and display commands to check each solution.

(a)

maximize z = 6x1 + 4x2

subject to

2x1 + 3x2 ≤ 9

x1 ≥ 4

x2 ≤ 6

x1, x2 ≥ 0

(b)

maximize z = 3x1 + 2x2

subject to

x1 ≤ 4

x1 + 3x2 ≤ 15

2x1 + x2 = 10

x1, x2 ≥ 0

(c)

minimize z = −x1 + 4x2

subject to

x1 + 3x2 ≥ 5

x1 + x2 ≥ 4

x1 − x2 ≤ 2

x1, x2 ≥ 0

(d)

maximize z = 2x1 + 6x2

subject to

x1 + 3x2 ≤ 6

x1 + 2x2 ≥ 5

x1, x2 ≥ 0

1.2. Exercises Section 1.2 19

(e)

minimize z = 2x1 + 3x2

subject to

3x1 + x2 ≥ 1

x1 + x2 ≤ 6

x2 ≥ 0

2. Use the graphical methods discussed in this section to solve the Foraging
Herbivore Model, Exercise 4, from Section 1.1.

3. Consider the LP given by

maximize z = 2x1 − x2

subject to

x1 + 3x2 ≥ 8

x1 + x2 ≥ 4

x1 − x2 ≤ 2

x1, x2 ≥ 0.

(a) Sketch the feasible region for this LP, along with the contours
corresponding to z = 50, z = 100, and z = 150.

(b) If M is an arbitrarily large positive real number, what is a descrip-
tion, in terms of M, of the feasible points (x1, x2) corresponding to
z =M.

(c) Explain why the LP is unbounded.

4. Suppose f is a linear function of x1 and x2, and consider the LP given
by

maximize z = f (x1, x2)

subject to

x1 ≥ 1

x2 ≤ 1

x1, x2 ≥ 0.

(a) Sketch the feasible region for this LP.

(b) Give an example of an objective function f for which the LP has a
unique optimal solution.

(c) Give an example of an objective function f for which the LP is
unbounded.

(d) Give an example of an objective function f for which the LP has
alternative optimal solutions.

20 Chapter 1. An Introduction to Linear Programming

1.3 Basic Feasible Solutions

The FuelPro LP, (1.1), has as its optimal solution, x1 = 4 and x2 = 10, which
corresponds to an objective value of z = 46. The feasible region for the LP,
labeled with the optimal solution, is shown in Figure 1.4.

x1

x2

(4, 10)

FIGURE 1.4: Feasible region for FuelPro LP.

We see that the feasible region has five “corner points” or “extreme points,”
one of which is the optimal solution. This result holds true in general. Namely,
for the LP (1.4) having a unique optimal solution, the optimal solution occurs
at an “extreme point” of the feasible region inRn. The simplex algorithm, which
we develop in Section 2.1, is a linear-algebra based method that graphically
corresponds to starting at one extreme point on the boundary of the feasible
region, typically (0, 0), and moving to adjacent extreme points through an
iterative process until an optimal solution is obtained. The purpose of this
section is to lay a foundation for this algorithm by developing appropriate
terminology that connects the underlying ideas of systems of equations to
those of the feasible region and its extreme points.

1.3. Basic Feasible Solutions 21

The FuelPro LP (1.1) is given by

maximize z = 4x1 + 3x2

subject to

x1 ≤ 8

2x1 + 2x2 ≤ 28

3x1 + 2x2 ≤ 32

x1, x2 ≥ 0.

Because systems of equations are a familiar setting from linear algebra, we
introduce additional variables, called slack variables, corresponding to these
three inequalities. Labeling these variables as s1, s2, and s3, we then have

maximize z = 4x1 + 3x2 (1.8)

subject to

x1 + s1 = 8

2x1 + 2x2 + s2 = 28

3x1 + 2x2 + s3 = 32

x1, x2, s1, s2, s3 ≥ 0.

We will use the terminology that (1.8) is the original LP (1.6) expressed in
standard form.

Note that requiring the slack variables to be nonnegative assures us that our
three equations are equivalent to the three inequalities from (1.6). Recalling
the matrix inequality form notation (1.4) and denoting the vector of slack
variables by

s =

s1

s2

s3

 ,

we can express the standard matrix form as follows:

maximize z = c · x (1.9)

subject to

[A|I3]

[
x
s

]
= b

x, s ≥ 0,

22 Chapter 1. An Introduction to Linear Programming

where I3 denotes the 3-by-3 identity matrix. Thus we have converted the
m = 3 inequalities in n = 2 decision variables from the original LP into
a matrix equation, or system of equations, involving m = 3 equations in
m + n = 5 unknowns. Note in particular that [A|I3] is a 3 by 5 matrix and that[
x
s

]
belongs to R5.

It is important to recognize connections between solutions to this system and
the problem at hand.

_ _

Waypoint 1.3.1. Before proceeding, explain why the matrix equation

[A|I3]

[
x
s

]
= b has infinitely many solutions.

_ _

We now seek to determine the set of solutions to [A|I3]

[
x
s

]
= b, ignoring mo-

mentarily the sign restrictions placed on the variables in the LP. Recall that
the row space, resp. column space of a matrix is the set of all linear combina-
tions of the row vectors (resp. column vectors) that comprise the matrix. The
dimensions of the row and column spaces are equal, having common value
referred to as the rank of the matrix. In the FuelPro example,

[A|I3] =

1 0 1 0 0
2 2 0 1 0
3 2 0 0 1

 ,

which, as elementary row operations demonstrate, has pivots in three
columns. Therefore [A|I3] has rank m = 3.

On the other hand, the null space of [A|I3] is the set of all solutions to the
homogeneous matrix equation [A|I3] v = 0. By the Rank-Nullity Theorem
(Theorem B.6.1), the sum of its dimension, referred to as the nullity, and the
rank equals the number of columns of [A|I3], which is m + n = 5. Hence, the
dimension of the null space is n = 2.

Finally, we recall that the solution to a consistent matrix equation [A|I3]

[
x
s

]
= b

can be written in the form [
x
s

]
= vh + vp,

where vh is the general solution to the homogeneous matrix equation [A|I3] v =

1.3. Basic Feasible Solutions 23

0 and vp is a particular solution to the nonhomogeneous equation [A|I3] v =
b. Therefore if the null space of [A|I3] is dimension n = 2, we can expect

[A|I3]

[
x
s

]
= b to have n = 2 free variables in its general solution, provided the

matrix equation is consistent.

_ _

Waypoint 1.3.2. For the FuelPro LP, determine the general solution to

the matrix equation [A|I3]

[
x
s

]
= b. For each extreme point in Figure

1.5, choose the free variables in a way that produces the given extreme

point. Next to the extreme point, label the vector

[
x
s

]
with all five of

its entries.

_ _

0

2

4

6

8

10

12

14

16

2 4 10

x2

x16 8

FIGURE 1.5: Feasible region for FuelPro LP.

The solutions to the preceding matrix equation play a special role in the
context of the LP, in that they correspond to what we call basic solutions.

Definition 1.3.1. Consider an LP consisting of m inequalities and n decision
variables, whose matrix inequality form is given by (1.4). Then the constraints
of the standard matrix form of this LP are represented by the matrix equation,

[A|Im]

[
x
s

]
= b, (1.10)

24 Chapter 1. An Introduction to Linear Programming

where, x is an n by 1 vector of decision variables and s is an m by 1 vector of
slack variables. A basic solution to the LP is formed by first setting to zero

n variables of

[
x
s

]
. These variables are referred to as the nonbasic variables.

If the m columns corresponding to the remaining variables form a linearly
independent set, then there exist unique values for the remaining variables,
which we call basic variables. Taken together, these nonbasic and basic variables
constitute a basic solution of LP (1.4).

The fact that the basic variables, denoted by the vector x′, are uniquely deter-
mined in Definition 1.3.1 follows from the Invertible Matrix Theorem and the
assumption that the m columns form a linearly independent set. For when
this occurs, these columns yield an m by m invertible submatrix, B, of [A|Im],
so that Bx′ = b has a unique solution.

Here is the connection to commonly used terminology in linear algebra.
When solving a system of equations having infinitely many solutions, we
obtain two types of variables, those considered free and those considered
basic. While there exist different possible ways to assign which variables are
free, their number must equal the nullity of the matrix. The values of the free
variables uniquely determine the basic variable values. In the terminology
of Definition 1.3.1, nonbasic variables can be viewed as free variables all of
which have been set to zero.

Basic solutions correspond to intersection points of the constraints of the orig-
inal LP. Unfortunately, this definition is not precise in that it can also include
points that lie outside the LP’s feasible region. In particular, observe that in
the preceding Waypoint, intersection points outside the feasible region cor-

responded to vectors

[
x
s

]
, in which at least one entry is negative. We therefore

refine our definition of basic solution as follows.

Definition 1.3.2. A basic feasible solution (BFS) to an LP is a basic solution
in which all basic variables are nonnegative.

For the FuelPro example, basic feasible solutions correspond to the points
(0, 0), (8, 0), (8, 4), (4, 10), and (0, 14).

1.3. Exercises Section 1.3 25

_ _

Waypoint 1.3.3. Consider the minimization problem

minimize z = −5x1 + 2x2

subject to

x1 ≤ 2

3x1 + 2x2 ≤ 6

8x1 + 3x2 ≤ 12

x1, x2 ≥ 0.

1. Sketch the feasible region for the LP. Label all points of intersec-
tion of the constraints.

2. Introduce slack variables and express the LP in standard matrix
form.

3. Determine the basic solutions and basic feasible solutions for
the LP. Complete this last task without actually performing el-
ementary row operations. Instead use the points of intersection
determined in (1).

4. Graphically solve the LP by using contours of the objective
function.

_ _

Exercises Section 1.3

1. For each of the following LPs, write the LP in the standard matrix form

maximize z = c · x
subject to

[A|Im]

[
x
s

]
= b

x, s ≥ 0.

Then determine all basic solutions, expressing each solution in vector
form and indicating whether it is also basic feasible. Label each basic
feasible solution next to its corresponding point on the feasible region
graph.

26 Chapter 1. An Introduction to Linear Programming

(a)

maximize z = 6x1 + 4x2

subject to

2x1 + 3x2 ≤ 9

x1 ≥ 4

x2 ≤ 6

x1, x2 ≥ 0

(b)

minimize z = −x1 + 4x2

subject to

x1 + 3x2 ≥ 5

x1 + x2 ≥ 4

x1 − x2 ≤ 2

x1, x2 ≥ 0

2. Show that in the FuelPro LP that no basic solution exists for which x1

and s1 are nonbasic. This result underscores the importance of the linear
independence condition in Definition 1.3.1.

3. The following LP has its feasible region given by the segment connecting

the points x =

[
3
4

]
and x =

[
4
2

]
:

maximize z = 3x1 + 2x2

subject to

x1 ≤ 4

x1 + 3x2 ≤ 15

2x1 + x2 = 10

x1, x2 ≥ 0.

(a) By rewriting the third constraint as the combination of two oth-
ers, express the LP in matrix inequality form. Then express it in
standard matrix form.

(b) The standard matrix form has four slack variables, two of which
correspond to the third constraint. Show that when these two are
chosen as nonbasic, the resulting system of equations in the ba-
sic variables infinitely many solutions, which correspond to the

segment connecting x =

[
3
4

]
and x =

[
4
2

]
.

1.3. Exercises Section 1.3 27

4. According to Definition 1.3.2, a basic feasible solution is a basic solution
in which all basic variables are nonnegative. An LP is said to be degen-
erate if it has a basic feasible solution in which at least one basic variable
equals zero. Experiment and construct an example of a degenerate LP.
(Hint: Start with the FuelPro LP and add a constraint, whose boundary
line intersects the original LP at one of its basic feasible solutions.)

5. A subset V of Rn is said to be convex provided whenever two points
belong to V, so does the line segment connecting them. In other words,
x1, x2 ∈ V, implies that tx1 + (1 − t)x2 ∈ V for all 0 ≤ t ≤ 1.

(a) Use the matrix inequality form of an LP to show that the feasible
region of an LP is convex.

(b) Show that if x1 and x2 are solutions of an LP, so is tx1 + (1− t)x2 for
any 0 ≤ t ≤ 1.

6. Given a set of vectors V =
{
x1, x2, . . . , xp

}
in Rn, a convex combination of

the vectors is any linear combination of the form

p∑

i=1

σixi = σ1x1 + σ2x2 + · · · + σpxp,

where the weights σi satisfy σi ≥ 0 for all i and where

p∑

i=1

σi = 1.

The set of all convex combinations of vectors in V is referred to as
the convex polyhedron, or convex hull, generated by V. Suppose that the
feasible region of the LP is the convex polyhedron generated by its

basic feasible solutions, V =
{
x1, x2, . . . , xp

}
. Show that if the LP has an

optimal solution, then it has a basic feasible solution that is also optimal.
(Hint: Start with an LP having optimal solution x̃. Express x̃ as a convex
combination of the basic feasible solutions and show that the objective
function evaluated at one of the basic feasible solutions is at least as
large as the objective function evaluated at x̃.)

Chapter 2

The Simplex Algorithm

2.1 The Simplex Algorithm

Considered to be the classical approach for solving LPs, the simplex algorithm
was developed in 1947 by George Dantzig, who used it to solve ”program-
ming” problems for the Air Force. Such logistics problems addressed a variety
of issues including, for example, the scheduling of troop deployments and
the delivery of supplies.

2.1.1 An Overview of the Algorithm

We begin by revisiting the standard form of the FuelPro LP:

maximize z = 4x1 + 3x2 (2.1)

subject to

x1 + s1 = 8

2x1 + 2x2 + s2 = 28

3x1 + 2x2 + s3 = 32

x1, x2, s1, s2, s3 ≥ 0.

We will rewrite the LP as an “augmented matrix,” so to speak. That is, we
will write the system of equations given by the constraints as an augmented
matrix, and we will add a top row that records the value of our objective
function. The result is shown in Table 2.1.

TABLE 2.1: Initial tableau for FuelPro Petroleum problem

z x1 x2 s1 s2 s3 RHS
1 -4 -3 0 0 0 0

0 1 0 1 0 0 8
0 2 2 0 1 0 28
0 3 2 0 0 1 32

29

30 Chapter 2. The Simplex Algorithm

Sometimes Table 2.1 is referred to as the “simplex tableau.”

In a nutshell, the simplex algorithm works as follows:

1. We begin by finding an initial basic feasible solution (BFS). For many of
the initial problems we shall encounter, this task is readily accomplished
by setting all decision variables equal to zero.

2. We use the top row of the tableau to determine which nonbasic variable
should then become positive in order to increase the objective function
most rapidly. Because this variable will switch from nonbasic to basic,
we call it the entering variable.

3. We then find the basic variable that swaps places with the entering
variable and becomes nonbasic.

4. Once we determine which variables trade roles, we perform elementary
row operations, whose purpose is to yield a new tableau containing
updated values for all variables, as well as the objective function.

5. We repeat the previous steps until the objective function can no longer
be increased. The basic feasible solution at that stage is the optimal
solution.

2.1.2 A Step-By-Step Analysis of the Process

We now break down the algorithm into greater detail by using it to solve the
LP 2.1.

1. We start by finding an initial BFS. In the FuelPro example, this is easily
accomplished by setting x1 = x2 = 0, in which case the slack variables are
given by s1 = 8, s2 = 28, and s3 = 32. This BFS corresponds to the origin
in the feasible region. We have BV = {s1, s2, s3} and NBV = {x1, x2}.
(Note, we do not consider z as being either BV or NBV in this process.)
Later, we will discuss how to handle situations when the origin does
not correspond to a BFS.

2. Our objective function is given by z = f (x1, x2) = 4x1 + 3x2. We see
that increasing the nonbasic variable x1 by a set amount will increase
z more than will increasing the other nonbasic variable x2 by the same
amount. We thus choose x1 as the entering variable and focus on its cor-
responding column. Note that in general, selecting the entering variable
in a maximization problem comes down to determining the nonbasic
variable whose coefficient in the top row is most negative.

3. We now determine the extent to which x1 may increase by focusing on

2.1. The Simplex Algorithm 31

the constraint equation corresponding to each row. Each such equation
involves x1 and a basic variable. We have the following three equations:

x1 + s1 = 8

2x1 + s2 = 28

3x1 + s3 = 32.

Currently, s1 = 8, s2 = 28, and s3 = 32. Since, the values of these variables
must remain nonnegative, x1 can only increase by so much before at least
one of these values becomes zero. In general, each equation allows x1

to increase up to a value of

(RHS in Equation)/(Coeff of x1 in Equation).

In this case, the three equations permit x1 to increase up to values of

8, 14, and
32

3
, respectively. Since 8 is the smallest of these three values,

x1 will replace s1 as a basic variable. We sometimes call this process
of computing ratios to determine which variable becomes nonbasic,
performing the ratio test.

4. We now pivot on the entry in the column corresponding to x1 and
the row corresponding to s1. This entry is highlighted in Table 2.1. The
purpose of this pivot is to update values of all variables and the objective
function when x1 and s1 switch roles. The result is the new tableau in
Table 2.2.

TABLE 2.2: Tableau after first iteration
z x1 x2 s1 s2 s3 RHS
1 0 -3 4 0 0 32
0 1 0 1 0 0 8
0 0 2 -2 1 0 12

0 0 2 -3 0 1 8

We have now completed one iteration of the simplex algorithm. The
new BFS corresponds to the extreme point at (8, 0). At this stage,
BV = {x1 = 8, s2 = 12, s3 = 8}, NBV = {x2, s1}, and z = 32.

5. We now repeat this process. The only negative nonbasic variable coef-
ficient in the top row of Table 2.2 corresponds to x2, so x2 becomes the
entering variable. Since x1 is now basic, the constraints are given by

x1 + 0x2 = 8

2x2 + s2 = 12

2x2 + s3 = 8.

32 Chapter 2. The Simplex Algorithm

We again apply the ratio test. Note that the first equation places no
restriction on the growth of x2. The remaining two equations limit the
increase in x2 to 6 and 4, respectively. We thus focus on the third equa-
tion, which tells us that x2 replaces s3 as a basic variable, and we pivot
on the entry highlighted in Table 2.2. The new tableau is given in Table
2.3.

TABLE 2.3: Tableau after second iteration
z x1 x2 s1 s2 s3 RHS
1 0 0 − 1

2 0 3
2 44

0 1 0 1 0 0 8

0 0 0 1 1 -1 4

0 0 1 − 3
2 0 1

2 4

The new BFS corresponds to the extreme point at (8, 4). We have BV =
{x1 = 8, x2 = 4, s2 = 4}, NBV = {s1, s3} and z = 44.

6. The process is repeated one last time. The variable s1 becomes basic.

The corresponding ratios are given by 8, 4, and −8

3
. Since the negative

ratio corresponds to unlimited growth in s1, the value of 4 “wins” the
ratio test. Thus s1 replaces s2 as a basic variable and we pivot on the
highlighted entry in Table 2.3. The resulting tableau appears in Table
2.4.

TABLE 2.4: Tableau after third iteration
z x1 x2 s1 s2 s3 RHS
1 0 0 0 1

2 1 46
0 1 0 0 -1 1 4
0 0 0 1 1 -1 4
0 0 1 0 3

2 -1 10

The new BFS corresponds to the extreme point at (4, 10). We have
BV = {x1 = 4, x2 = 10, s1 = 4}, NBV = {s2, s3} and z = 46. Note that
all coefficients in the top row of the tableau are nonnegative, so we
have obtained the optimal solution, and FuelPro maximizes its profit if
x1 = 4, x2 = 10, in which case z = 46, i.e., a profit of $4.60 per hour. These
results agree with those obtained using Maple’s LPSolve command and
graphical tools from Section 1.2.

Here are points to keep in mind regarding this process.

• Performing elementary row operations is a tedious task. Consequently,
one’s focus should be on global aspects of the algorithm such as keeping

2.1. The Simplex Algorithm 33

track of the basic and nonbasic variables and understanding the ratio-
nale behind the ratio test. Doing so will prove beneficial during later
discussions of special cases, duality, and sensitivity analysis. A Maple
worksheet found at the end of this section can facilitate this process.

• The preceding example was fairly straightforward. As such, it raises
a variety of questions. For example, “What happens in the process if
the LP is unbounded? What happens if the LP has alternative optimal
solutions? What happens if the LP has equality constraints?” We address
all these questions in the next section.

2.1.3 Solving Minimization Problems

The simplex algorithm is easily modified to solve minimization problems in
which x = 0 corresponds to a basic feasible solution. Suppose, for example,
that we consider the following minimization LP from Section 1.3:

minimize z = −5x1 + 2x2 (2.2)

subject to

x1 ≤ 2

3x1 + 2x2 ≤ 6

8x1 + 3x2 ≤ 12

x1, x2 ≥ 0.

There are two different approaches to solving (2.2):

1. Rephrase the problem as a maximization problem. That is, keep each
constraint above as is, but replace the objective with

maximize z̃ = − (−5x1 + 2x2) = 5x1 − 2x2.

Now solve the LP using the algorithm exactly as before.

2. Maintain the objective goal of minimizing z and modify the simplex
algorithm slightly as follows. At each stage, instead of choosing the
entering variable on the basis of the most negative coefficient in the
top row of the tableau, select the entering variable on the basis of the
most positive coefficient. (Think about why this works!) Then terminate
the algorithm when entries in the top row of the tableau corresponding
to nonbasic variables are all nonpositive.

Either of these methods works; our convention will be to use the latter. For
example, let us use this approach to solve LP (2.2). The initial tableau is given
in Table 2.5, in which case BV = {s1 = 2, s2 = 6, s3 = 12}, and NBV = {x1, x2}.

Since 5 is the most positive nonbasic variable coefficient in the top row, x1 is

34 Chapter 2. The Simplex Algorithm

TABLE 2.5: Initial tableau for minimization LP (2.2)

z x1 x2 s1 s2 s3 RHS
1 5 -2 0 0 0 0
0 1 0 1 0 0 2
0 3 2 0 1 0 6

0 8 3 0 0 1 12

the entering variable. The third constraint row yields the smallest ratio of
3

2
,

so s3 becomes nonbasic and is replaced by x1. The new tableau is shown in
Table 2.6.

TABLE 2.6: Tableau after first iteration for minimization LP (2.2)

z x1 x2 s1 s2 s3 RHS
1 0 − 31

8 0 0 − 5
8 − 15

2

0 0 − 3
8 1 0 − 1

8
1
2

0 0 7
8 0 1 − 3

8
3
2

0 1 3
8 0 0 1

8
3
2

The new BFS corresponds to the extreme point at
(

3

2
, 0

)
, where BV =

{
x1 =

3

2
, s1 =

1

2
, s2 =

3

2

}
, NBV = {x2, s3} and z = −15

2
. Since all nonbasic vari-

able coefficients in the top row of the tableau are nonpositive, this solution is
optimal.

_ _

Waypoint 2.1.1. Now solve the minimization LP (2.2) by converting
it to a maximization problem.

_ _

2.1.4 A Step-by-Step Maple Implementation of the Simplex
Algorithm

What follows is a worksheet, entitled Simplex Algorithm.mw, which facili-
tates using the simplex algorithm to solve an LP stated in matrix inequality

2.1. The Simplex Algorithm 35

form as

maximize z = c · x (2.3)

subject to

Ax ≤ b

x ≥ 0.

In this case, the worksheet is implemented to solve the FuelPro LP. The user
enters the quantities c, A, and b, as well as the number of constraints and
number of decision variables. (The Vector command is used to enter c as a
row vector.) A for-do loop structure then creates arrays of decision variables
and slack variables of appropriate respective sizes. These quantities are used
to create a matrix labeled LPMatrix. Note that the task of keeping track of
basic versus nonbasic variables is still left to the user.

Three Maple procedures are then created to facilitate implementation of the
simplex algorithm. A procedure is a small “program” within a worksheet that
accepts certain arguments and performs specified tasks. The first procedure,
Tableau, merely prints the tableau matrix with a top row of variable labels.
The second procedure, RowRatios(M,c)performs the ratio test on a matrix M
using column number c, where column 0 corresponds to the leftmost column
of the tableau. Once this procedure determines the ratio test results, the
third procedure, Iterate(M,c,r), pivots on the entry (c,r) of the matrix M ,
where column 0 corresponds to the leftmost column and row 0 to the top
row of the tableau, not including the variable labels. The term local within
each procedure refers to one or more variables that are used locally to the
procedure only and whose values are not accessible outside of the procedure.

> restart;with(LinearAlgebra):

> c:=Vector[row]([4,3]);
Create row vector with objective coefficients.

c := [4, 3]

> A:=Matrix(3,2,[1,0,2,2,3,2]);
Matrix of constraint coefficients.

A :=

1 0
2 2
3 2

> b:=<8,28,32>;
Constraint bounds.

b :=

8
28
32

36 Chapter 2. The Simplex Algorithm

> n:=2:m:=3:
Enter the number of decision variables and constraints, respectively.

> x:=array(1..n):s:=array(1..m):
Create arrays of decision and slack variables.

> Labels:=Matrix(1,2+n+m,[z,seq(x[i],i=1..n),seq(s[j],j=1..m),RHS]):
Create a top row of variable labels for the tableau

> LPMatrix:=<UnitVector(1,m+1) | <-c,A> | <ZeroVector[row](m),
IdentityMatrix(m)> | <0,b>>;
Create matrix corresponding to the tableau.

LPMatrix :=

1 −4 −3 0 0 0 0
0 1 0 1 0 0 8
0 2 2 0 1 0 28
0 3 2 0 0 1 32

> Tableau:=proc(M);return(<labels,M>):end:
Procedure for printing tableau with labels.

> RowRatios:=proc(M,c) local k:
for k from 2 to nops(convert(Column(M,c+1),list)) do

if M[k,c+1]=0 then print(cat(‘‘Row ’’, convert(k-1,string), ‘‘

Undefined’’))

else print(cat(‘‘Row ’’,convert(k-1,string), ‘‘Ratio = ’’,

convert(evalf(M[k,nops(convert(Row(M,k),list))]/M[k,c+1]),string)))

end if; end do;end:

#The ratio test procedure applied to column c of M.

> Iterate:=proc(M,r,c) RowOperation(M,r+1,(M[r+1,c+1])ˆ(-1),inplace=true):
Pivot(M,r+1,c+1,inplace=true):return(Tableau(M)):end:

Iteration of the simplex algorithm applied to row r, column

c

> Tableau(LPMatrix);
Display initial tableau.

z x1 x2 s1 s2 s3 RHS
1 −4 −3 0 0 0 0
0 1 0 1 0 0 8
0 2 2 0 1 0 28
0 3 2 0 0 1 32

> RowRatios(LPMatrix,1);
Determine ratios corresponding to column 1.

“Row 1 Ratio = 8.”

“Row 2 Ratio = 14.”

“Row 3 Ratio = 10.66666667.”

2.1. The Simplex Algorithm 37

> Iterate(LPMatrix,1,1);
Pivot on entry in row 1, column 1 of matrix.

z x1 x2 s1 s2 s3 RHS
1 0 −3 4 0 0 32
0 1 0 1 0 0 8
0 0 2 −2 1 0 12
0 0 2 −3 0 1 8

> RowRatios(LPMatrix,2);
Determine ratios corresponding to column 2.

“Row 1 Ratio Undefined.”

“Row 2 Ratio = 6.”

“Row 3 Ratio = 4.”

> Iterate(LPMatrix,3,2);
Pivot on entry in row 3, column 2 of matrix.

z x1 x2 s1 s2 s3 RHS
1 0 0 − 1

2 0 3
2 44

0 1 0 1 0 0 8
0 0 0 1 1 −1 4
0 0 1 − 3

2 0 1
2 4

> RowRatios(LPMatrix,3);
Determine ratios corresponding to column 3.

“Row 1 Ratio =8.”

“Row 2 Ratio = 4.”

“Row 3 Ratio = -2.666666667.”

> Iterate(LPMatrix,2,3);
Pivot on entry in row 2, column 3 of matrix to obtain final

tableau.

38 Chapter 2. The Simplex Algorithm

z x1 x2 s1 s2 s3 RHS
1 0 0 0 1

2 1 46
0 1 0 0 −1 1 4
0 0 0 1 1 −1 4
0 0 1 0 3

2 −1 10

Exercises Section 2.1

1. Use the simplex algorithm to solve each of the following LPs.

(a)

maximize z = 3x1 + 2x2

subject to

x1 ≤ 4

x1 + 3x2 ≤ 15

2x1 + x2 ≤ 10

x1, x2 ≥ 0

(b)

maximize z = 4x1 + 3x2

subject to

x1 ≤ 4

−2x1 + x2 ≤ 12

x1 + 2x2 ≤ 14

x1, x2 ≥ 0

(c)

maximize z = 4x1 + x2 + 5x3

subject to

2x1 + x2 + 3x3 ≤ 14

6x1 + 3x2 + 3x3 ≤ 22

2x1 + 3x2 ≤ 14

x1, x2, x3 ≥ 0

2.1. Exercises Section 2.1 39

(d)

minimize z = 3x1 − 2x2

subject to

x1 − 2x2 ≤ 2

x1 + x2 ≤ 4

x1, x2 ≥ 0

2. Try to use the simplex algorithm to solve the minimization LP

minimize z = −x1 + 4x2

subject to

x1 + 3x2 ≥ 8

x1 + x2 ≥ 4

x1 − x2 ≤ 2

x1, x2 ≥ 0.

What happens? Specify the attribute of this problem that makes solving
it more challenging than solving the minimization problem in Exercise
1.

3. A constraint is said to be binding at the optimal solution of an LP if there
is equality in that constraint in the optimal solution. For the first two
LPs in Exercise 1, determine which constraints are binding.

40 Chapter 2. The Simplex Algorithm

2.2 Alternative Optimal/Unbounded Solutions and Degen-
eracy

When applying the simplex algorithm, how can we determine from the
tableau whether an LP has alternative optimal solutions or is unbounded?
The purpose of this section is to address these special cases.

2.2.1 Alternative Optimal Solutions

Consider first the LP given by the following:

maximize z = 12x1 + 3x2 (2.4)

subject to

4x1 + x2 ≤ 8

5x1 + 2x2 ≤ 12

x1, x2 ≥ 0.

The feasible region for the LP is shown in Figure 2.1. Superimposed on the
feasible region is the contour z = 12 of the objective function. The fact that the
contour z = 12 and all others are parallel to one edge of the feasible region
can be immediately seen by observing that the objective function is a scalar
multiple of the left-hand side of the first constraint.

0

2

4

6

8

0.5 1 1.5 2 2.5

x1

x2

z=12

FIGURE 2.1: Feasible region for LP 2.4.

2.2. Alternative Optimal/Unbounded Solutions and Degeneracy 41

After introducing two slack variables s1 and s2 and performing one iteration
of the simplex algorithm, we arrive at the tableau given in Table 2.7.

TABLE 2.7: LP (2.4) after one iteration

z x1 x2 s1 s2 RHS
1 0 0 3 0 24
0 1 1

4
1
4 0 2

0 0 3
4 − 5

4 1 2

We have BV = {x1 = 2, s2 = 2}, which corresponds to the extreme point at

x =

[
2
0

]
.

The nonbasic variables are given by NBV = {x2, s1} and neither has a nega-
tive coefficient in the top row, thereby indicating that the current solution is
optimal. But let’s take a closer look. The top row of the tableau dictates that
increasing s1 will decrease the value of z. (In fact, it will return us to the initial
basic feasible solution at the origin!) On the other hand, increasing the other
nonbasic variable x2 from its current value of zero will not change the current z value
because x2 currently has a coefficient of zero in the top row. An additional iteration

of the simplex algorithm in which x2 becomes basic leads to x1 =
4

3
, x2 =

8

3
,

and s1 = s2 = 0. Thus, each of the vectors x =

[
2
0

]
and x =

[
4
3
8
3

]
are solutions

to the LP. By exercise 5, of Section 1.3, so is every point on the line segment
connecting the two vectors:

x = (1 − t)

2
0
0
2

+ t

4
3
8
3
0
0

,

where t ∈ [0, 1]. This infinite set of vectors corresponds to points along the

edge of feasible region connecting (2, 0) and
(

4

3
,

8

3

)
.

2.2.2 Unbounded Solutions

How do we determine whether an LP is unbounded from its tableau? (Recall
that for a maximization problem, an unbounded LP is one in which the
objective function can be made arbitrarily large.) To answer this question,
we consider an LP whose tableau at some stage of the simplex algorithm is
almost identical to that from Table 2.2 of Section 2.1, such as the one shown
in Table 2.8.

.

42 Chapter 2. The Simplex Algorithm

TABLE 2.8: Example tableau similar to 2.2

z x1 x2 s1 s2 s3 RHS
1 0 -3 4 0 0 32
0 1 0 1 0 0 8
0 0 � -2 1 0 12
0 0 � -3 0 1 8

Assume that x1, s2, and s3 are basic. The variable x2 is the entering variable,
and clearly any strict increase in its value will lead to a strict increase in z. The
row of the tableau corresponding to the first constraint places no limit on the
increase of x2 due to the coefficient of zero in the x2 column. Thus, if either
of the entries marked � were also zero, then the corresponding constraints
would also place no limit on the increase of x2. But the same conclusion can
be made if either of the entries marked � were less than zero. The variable
x2 could increase as large as desired, and slack variables could increase in
a positive manner ensuring that all constraint equations were still satisfied.
Thus, if a variable in the top row of an LP maximum problem has a negative coefficient
and all the entries below the top row are less than or equal to zero, then the LP is
unbounded.

_ _

Waypoint 2.2.1. The tableau shown in Table 2.9 results when the sim-
plex algorithm is used to solve a standard maximization LP. Assume
that a ≥ 0 and that BV = {x1, s1}.

1. For which values of a does the LP have multiple optimal solu-
tions?

2. For which values of a is the LP unbounded?

3. For which values of a is the LP degenerate?

_ _

TABLE 2.9: Tableau for a standard maximization problem

z x1 x2 s1 s2 RHS
1 0 1 − a 0 2 − a 1
0 1 0 0 -1 a
0 0 a − 3 1 a − 4 2

2.2. Alternative Optimal/Unbounded Solutions and Degeneracy 43

2.2.3 Degeneracy

Recall that Definition 1.3.2 states the basic variables in any basic feasible
solution must be nonnegative. For the examples we have considered thus
far, basic variables have always been positive. A degenerate LP is one that
possesses a basic feasible solution in which at least one basic variable equals
zero. Degenerate LPs are important from the standpoint of convergence of
the simplex algorithm.

An important observation regarding the simplex algorithm is that from one
iteration to the next, the objective function increases by an amount equal to
the value of the entering variable multiplied by the negative of that variable’s
coefficient in the top row of the tableau. Thus, if an LP is nondegenerate, then
the new value of each entering variable must be nonzero so that the objective
function must strictly increase at each iteration. In particular, the simplex
algorithm cannot encounter the same basic feasible solution, so the algorithm
must terminate due to the finite number of such solutions.

For a degenerate LP, the objective function can remain unchanged over suc-
cessive iterations. One of the simplest examples illustrating this possibility is
given by the LP

maximize z = 5x1 + 2x2 (2.5)

subject to

x1 + x2 ≤ 6

x1 − x2 ≤ 0

x1, x2 ≥ 0,

whose feasible region is shown in Figure 2.2.

The initial tableau for the LP is given in Table 2.10.

TABLE 2.10: Initial tableau for 2.5
z x1 x2 s1 s2 RHS
1 -5 -2 0 0 0
0 1 1 1 0 6
0 1 -1 0 1 0

If we start with our usual initial basic feasible solution x1 = x2 = 0, we see
that s2 = 0, so this LP is degenerate. From a graphical perspective, if we
temporarily view the sign conditions as constraints, then we can see that the
LP is degenerate by observing there is an extreme point where equality holds
for three, as opposed to just two, of the four constraints.

44 Chapter 2. The Simplex Algorithm

0

1

2

3

4

5

6

7

1 2 3 4

x1

x2

FIGURE 2.2: Feasible region for a degenerate LP 2.5.

Following our “usual rules,” we allow x1 to become basic, but we observe
that, due to degeneracy, the ratio corresponding to the bottom row is zero.
To determine which of s1 or s2 becomes nonbasic, we consider the equations
corresponding to rows 1 and 2. Since x2 remains nonbasic, the equation in row
1 corresponds to x2 + s1 = 6, whereas that in row 2 yields x1 + s2 = 0. The first
equation permits x1 to increase by 6. However, in the second equation, the
basic variable s2 = 0 so that x1 cannot increase without s2 becoming negative.
If we treat the ratio in the bottom row as the smallest “positive” ratio and
pivot in a way that x1 replaces s2 as a nonbasic variable, we obtain the new
tableau in Table 2.11.

TABLE 2.11: Tableau after first iteration for 2.5
z x1 x2 s1 s2 RHS
1 0 -7 0 5 0
0 0 2 1 -1 6
0 1 -1 0 1 0

Note that the objective function value has not changed from zero nor has the
extreme point in the feasible region. Only have the roles of x1 and s2 as basic
versus nonbasic changed; their values after the first iteration remain equal to
zero.

At the next iteration, x2 becomes basic, and we are once again faced with a
ratio of 0. In this case, the equations corresponding to the bottom two rows
are given by 2x2 + s1 = 6 and x1 − x2 = 0. The first permits x1 to increase by

2.2. Exercises Section 2.2 45

3. The second permits x2 to increase without bound, provided x1 does so as
well in a manner that their difference remains equal to 0. Thus, we now let
x2 replace s1 as a basic variable, and the final tableau becomes that shown in
Table 2.12

TABLE 2.12: Tableau after second iteration for 2.5
z x1 x2 s1 s2 RHS
1 0 0 7

2
3
2 21

0 0 1 1
2 − 1

2 3

0 1 0 1
2

1
2 3

We see that the optimal solution corresponds to the extreme point,

[
3
3

]
with

an objective value of z = 21.

In this example, degeneracy led to ratios of zero, a situation we have not
encountered thus far when performing the ratio test. But degeneracy can also
result in ties when we perform the ratio test, implying there exists more than
one choice for the departing basic variable. Endless cycling between basic
feasible solutions is possible depending upon how such ties are resolved.
In real-life applications of linear programming, this problem rarely occurs.
In fact, any degenerate LP in which cycling occurs must contain at least six
decision variables [30]. Moreover, Bland’s Rule is an advanced linear pro-
gramming tool that overcomes the theoretical difficulty of cycling. Simply
put, if the variables of the LP are listed as a single variable with an increasing
subscript, it dictates a “smallest subscript rule.” At any stage of the simplex
algorithm, given a choice of two variables to enter the set of basic variables or
to leave the set of basic variables, always choose the variable with the smaller
subscript.

Exercises Section 2.2

1. Use the simplex algorithm to verify that the LP given by

minimize z = 2x1 + 6x2

subject to

x1 + 3x2 ≤ 6

x2 ≤ 1

x1, x2 ≥ 0,

has alternative optimal solutions.

46 Chapter 2. The Simplex Algorithm

2. State a rule that can be used to determine from a tableau whether an LP
minimization problem is unbounded.

3. The tableau given in (2.13) corresponds to that obtained in the process
of using the simplex algorithm to solve an LP whose objective is to
maximize a function of x1 and x2. Assume that the variables s1 and s2

are nonbasic.

TABLE 2.13: Tableau for Exercise 3
z x1 x2 s1 s2 RHS
1 0 0 a 3 10
0 1 0 -1 -1 3
0 0 1 b 1 2

(a) Suppose the current basic solution is not optimal but that the LP is
bounded. After the next iteration of the simplex algorithm, what
are the new values of the decision variables and objective function
in terms of a and/or b?

(b) Suppose the current basic solution is optimal but that the LP has
alternative optimal solutions. Determine another such solution in
terms of a and/or b.

(c) If the LP is unbounded, what can be said about the signs of a and
b?

4. Table 2.14 results after two iterations of the simplex algorithm are ap-
plied to a maximization problem having objective function,
z = f (x1, x2) = x1 + 3x2.

TABLE 2.14: Tableau for LP having objective function z = f (x1, x2) = x1 + 3x2

z x1 x2 s1 s2 RHS
1 0 0 -5 4 19
0 0 1 -1 1 5
0 1 0 -2 1 4

Assume that the variables x1 and x2 are basic.

(a) Explain why this LP is unbounded.

(b) For each one unit increase in s1, by how much will x1 increase? By
how much will x2 increase?

(c) Use your previous result to express x2 as a linear function of x1,
valid for s1 ≥ 0.

2.2. Exercises Section 2.2 47

(d) Sketch the current decision variable values as a point in the x1x2-
plane. Draw a ray from this point, which falls upon the graph of
the linear function from (c).

(e) What must be the values of x1 and x2 along this ray so that z = 1000?
What is the corresponding value of s1?

5. An LP involving maximization of a linear function in two decision
variables has its feasible region shown in Figure 2.3.

0

1

2

3

4

5

2 4 6 8
x1

x2

FIGURE 2.3: Feasible region for Exercise 5.

(a) List the basic solutions to this LP in vector form,

[
x
s

]
, where x

and s denote vectors of decision and slack variables, respectively.
Explain why the LP is degenerate.

(b) What is the smallest possible number of iterations required to ob-
tain a basic variable equal to zero? What is the largest possible
number of iterations? What attribute of the objective function de-
termines this outcome.

48 Chapter 2. The Simplex Algorithm

2.3 Excess and Artificial Variables: The Big M Method

In this section we describe a technique by which we can modify the simplex
algorithm to solve LPs whose initial basic feasible solutions are not readily
apparent. An example of such an LP is given by the Foraging Herbivore Model,
from Exercise 4 of Section 1.1. For the sake of completeness, we reconstruct
this model here.

In certain parts of the U.S., studies have shown that the vole, or common field
mouse, is an herbivore whose diet consists predominantly of grass and a type
of broad-leafed herb known as forb. Empirical studies suggest that the vole
forages in a way that minimizes its total foraging time, subject to a set of two
constraints. ([5])

Table 2.15 provides relevant information concerning digestive capacity and
energy content. Food bulk records the extent to which the mass of a substance
increases after it enters the digestive system and becomes liquid-saturated.
For example, two grams of grass, when consumed, expands to 2× 1.64 = 3.28
grams within the digestive system. To distinguish the mass of food prior to
consumption from that in the digestive system, we use units of gm-dry and
gm-wet, respectively.

TABLE 2.15: Data for Foraging Herbivore model

Food bulk (gm-wet/gm-dry) Energy content (kcal/gm)

Grass 1.64 2.11
Forb 2.67 2.30

The digestive capacity of the vole is 31.2 gm-wet per day, and the vole must
consume enough food to meet an energy requirement of at least 13.9 kcal per
day. Assume that the vole’s foraging rate is 45.55 minutes per gram of grass
and 21.87 minutes per gram of forb.

Let x1 and x2 denote the quantity of grass and forb, respectively, consumed by
the vole on a given day. Units of both x1 and x2 are gm-dry, and consumption
results in a total mass of 1.64x1 + 2.67x2 gm-wet within the digestive system.
Food bulk limitations then lead to the constraint

1.64x1 + 2.67x2 ≤ 31.2.

Similar reasoning, based upon the daily energy requirement, yields
2.11x1 + 2.3x2 ≥ 13.9. Finally, the total foraging time, the quantity we seek
to minimize, is given by z = 45.55x1 + 21.87x2. Combining these results, we
arrive at the LP given in (2.6).

2.3. Excess and Artificial Variables: The Big M Method 49

minimize z = 45.55x1 + 21.87x2 (2.6)

subject to

1.64x1 + 2.67x2 ≤ 31.2

2.11x1 + 2.3x2 ≥ 13.9

x1, x2 ≥ 0.

_ _

Waypoint 2.3.1. Express LP (2.6) in the standard matrix form,

maximize z = c · x (2.7)

subject to

[A|I3]

[
x
s

]
= b

x, s ≥ 0.

Clearly specify the quantities, c, A, and b. The vector b should have
one negative entry.

_ _

In previously encountered LPs, an initial basic solution has been found by
choosing decision variables as nonbasic and slack variables as basic. In the
case of (2.7), this approach does not work. Specifically, if all decision variables
are set to zero, entries of s are uniquely determined but at least one is negative
due to the negative entry in b. Hence, setting the decision variables equal
to zero leads to a basic, but not basic feasible, solution. From a graphical
perspective, as shown in Figure 2.4, the difficulty stems from the fact the
origin lies outside the feasible region.

To investigate how the simplex algorithm can be modified to address this
type of situation, we first consider the numerically simpler LP given by

minimize z = 3x1 + x2 (2.8)

subject to

x1 + x2 ≤ 6

x1 ≥ 1

2x1 + x2 = 10

x1, x2 ≥ 0.

50 Chapter 2. The Simplex Algorithm

x1

x2

FIGURE 2.4: Feasible region for foraging herbivore LP, (2.6).

Note that LP (2.8) has an equality constraint; thus, its feasible region consists
of a segment in R2.

Certainly we can introduce a slack variable, s1 in the first constraint so that it
becomes x1 + x2 + s1 = 6. But rewriting the second constraint in ≤ form and
adding a slack variable will only lead to the same problem of finding an initial
basic feasible solution, so we instead subtract from x1 a nonnegative excess
variable, e2, and rewrite the second constraint as x1−e2 = 1. Clearly we can find
nonnegative values of x1 and e2 that satisfy this equation, but determining
nonnegative values of x2 and s1 that satisfy the other two constraint equations
may still prove quite difficult.

To address this challenge, we introduce even more variables, called artificial
variables, which are added to those constraints in which a ≥ or = is present.
To the second and third constraints, we introduce the nonnegative artificial
variables a2 and a3, respectively, so that (2.8) becomes

minimize z = 3x1 + x2 (2.9)

subject to

x1 + x2 + s1 = 6

x1 − e2 + a2 = 1

2x1 + x2 + a3 = 10

x1, x2, s1, e2, a2, a3 ≥ 0.

2.3. Excess and Artificial Variables: The Big M Method 51

Clearly this system yields a basic feasible solution in which the basic variables
are given by s1 = 6, a2 = 1, and a3 = 10.

The introduction of artificial variables therefore eliminates the difficulty of
finding an initial basic feasible solution. However, these additional variables
may yield an LP whose solution differs from that of the original LP. We
therefore modify the objective function of the original LP so that all artificial
variables in the new LP’s final solution are ensured to equal zero. For if
this outcome occurs and all artificial variables are zero, then the values of all
remaining variables (decision, slack, and excess) are exactly the same as those
in the optimal solution to the original LP.

The simplest way to modify the original objective function is to rewrite it as

z = 3x1 + x2 +Ma2 +Ma3,

where M is chosen to be a very large number. While there is no definitive rule
as to how large M should be, it is important that M be significantly larger
than any of the coefficients in the objective function, large enough so that any
nonzero artificial variable value in the final solution results in a significantly
larger z value. Put another way, the objective function incurs a substantial
penalty of M units for every one unit increase in any artificial variable. Thus,
we call this approach for solving the LP the Big M Method. For the particular
example under discussion, we set M = 20. The initial tableau for the LP is
given in Table 2.16.

TABLE 2.16: BV = {s1, a2, a3}
z x1 x2 s1 e2 a2 a3 RHS
1 -3 -1 0 0 -20 -20 0
0 1 1 1 0 0 0 6
0 1 0 0 -1 1 0 1
0 2 1 0 0 0 1 10

Since a2 and a3 are basic variables at the outset, pivots in their columns are
necessary to record the initial objective function value. Performing two pivots
yields the tableau in Table 2.17.

As this is a minimization LP, we focus on the column corresponding to the
nonbasic variable whose coefficient in the top row of the tableau is most
positive. This variable is x1. By the ratio test, x1 replaces a2 as a basic variable,
and we pivot on the indicated entry in Table 2.17. The resulting tableau is
given in Table 2.18.

Two more iterations of the simplex algorithm are then necessary to achieve

52 Chapter 2. The Simplex Algorithm

TABLE 2.17: BV = {s1, a2, a3}
z x1 x2 s1 e2 a2 a3 RHS
1 57 19 0 -20 0 0 220
0 1 1 1 0 0 0 6

0 1 0 0 -1 1 0 1
0 2 1 0 0 0 1 10

TABLE 2.18: BV = {x1, s1, a3}
z x1 x2 s1 e2 a2 a3 RHS
1 0 19 0 37 -57 0 163
0 0 1 1 1 -1 0 5
0 1 0 0 -1 1 0 1
0 0 1 0 2 -2 1 8

the optimal solution. The intermediate and final tableaus are given in Tables
2.19 and 2.20.

TABLE 2.19: BV = {x1, s1, e2}
z x1 x2 s1 e2 a2 a3 RHS
1 0 1

2 0 0 -20 − 37
2 15

0 0 1
2 1 0 0 − 1

2 1

0 1 1
2 0 0 0 1

2 5

0 0 1
2 0 1 -1 1

2 4

Recall that because this is a standard minimization problem, we terminate
the algorithm when entries in the top row of the tableau corresponding to
nonbasic variables are all nonpositive. Thus the optimal solution is given by
(x1, x2) = (4, 2) and an objective value of z = 14. It is extremely important to
observe that in this solution, both artificial variables are nonbasic!

To summarize, the Big M Method is a means of adapting the simplex algo-
rithm to LPs involving a wider variety of constraints. We start with an LP
written in a way that the right-hand side of each constraint is nonnegative. To
each constraint involving a ≥, we subtract a positive excess variable and add
an artificial variable. To each equality constraint, we simply add an artificial
variable.

2.3. Exercises Section 2.3 53

TABLE 2.20: BV = {x1, x2, e2}
z x1 x2 s1 e2 a2 a3 RHS
1 0 0 -1 0 -20 -18 14
0 0 1 2 0 0 -1 2
0 1 0 -1 0 0 1 4
0 0 0 -1 1 -1 1 3

_ _

Waypoint 2.3.2. Now use the Big M Method to solve the Herbivore
Foraging Model (2.6).

_ _

Exercises Section 2.3

1. Solve each of the LPs using the Big M Method.

(a)

minimize z = −x1 + 4x2

subject to

x1 + 3x2 ≥ 8

x1 + x2 ≥ 4

x1 − x2 ≤ 2

x1, x2 ≥ 0

(b)

minimize z = x1 + x2

subject to

2x1 + 3x2 ≥ 30

−x1 + 2x2 ≤ 6

x1 + 3x2 ≥ 18

x1, x2 ≥ 0

54 Chapter 2. The Simplex Algorithm

(c)

maximize z = x1 + 5x2 + 6x3

subject to

x1 + 4x2 + 2x3 = 50

x1 − 4x2 + 4x3 ≥ 40

x1, x2, x3 ≥ 0

2.4. A Partitioned Matrix View of the Simplex Method 55

2.4 A Partitioned Matrix View of the Simplex Method

Partitioned matrices provide an elegant interpretation of the simplex algo-
rithm in terms of matrix multiplication. This interpretation is crucial for the
development of ideas in subsequent sections.

2.4.1 Partitioned Matrices

Simply put, a partitioned matrix is a “subdivision” of a matrix into smaller
submatrices or “blocks,” each obtained by deleting rows and/or columns of
the original matrix. As a simple example, we consider the matrix M defined
by

M =

1 3 2 1
2 0 −1 1
−5 0 1 0
2 6 0 1

. (2.10)

Although M has four rows and columns, it can be partitioned into four, 2-by-2

matrices. Namely, if, A =

[
1 3
2 0

]
, B =

[
2 1
−1 1

]
, C =

[
−5 0
2 6

]
, and I2 =

[
1 0
0 1

]
,

then

M =

[
A B
C I2

]
. (2.11)

Clearly M can be partitioned in different ways. However, the goal in most
contexts is to partition a matrix in a manner that facilitates performing matrix
addition and/or multiplication.

For example, the product M2 can be calculated directly, but it can also be
computed by using (2.11) along with the fact all products involving A, B, C,
and I2 are defined. The result is as follows:

M2 =

[
A B
C I2

]
·
[
A B
C I2

]
(2.12)

=

[
A2 + BC AB + BI2

CA + I2C CB + I2
2

]

=

[
A2 + BC AB + B
CA + C CB + I2

]

Observe that we compute M2 essentially by viewing each block as a scalar

56 Chapter 2. The Simplex Algorithm

and using the technique for multiplying 2-by-2 matrices. A simple calculation

shows that (2.12), A2 + BC =

[
−1 9
9 12

]
, which determines the four entries of

M2 belonging to the first two rows and first two columns. The other three
entries of (2.12) are computed in a similar manner.

_ _

Waypoint 2.4.1. Calculate each of the quantities AB + B, CA + C,
and CB + I2. Use the results to compute the remaining entries of M2.
Then calculate M2 directly using M itself to verify that your answer
is correct.

_ _

Care must be exercised when multiplying partitioned matrices so as to en-
sure that all products involving submatrices in the partition are defined and
computed in the correct order.

For example, suppose that A and B are 3-by-3 and 3-by-2 matrices, respec-
tively. Assume that c is a (column) vector inR3, d is a (row) vector in R2, and
that 03×1 and 01×3 represent the zero column vector and zero row vector in

R
3, respectively. Then

[
A 03×1

01×3 1

]
and

[
B c
d 2

]
are 4-by-4 and 4-by-3 matrices,

respectively, whose product is given by

[
A 03×1

01×3 1

]
·
[
B c
d 2

]
=

[
AB + 03×1 · d Ac + 2 · 03×1

01×3 · B + 1 · d 01×3 · c + 2

]
(2.13)

=

[
AB Ac
d 2

]
.

One means of ensuring various matrix products are defined is to record
dimensions of all matrices and vectors as subscripts. For example, in (2.13),
the entry, AB + 03×1 · d, can be viewed as A3×3B3×2 + 03×1d1×2, all of whose
products and sums are defined and yield a 3-by-2 matrix.

2.4.2 Partitioned Matrices with Maple

Construction of partitioned matrices in Maple is very straightforward. As-
sume that matrices A, B, and C are defined using syntax discussed in Section
C.5. Matrices are augmented through use of the | symbol and stacked us-
ing the comma. When augmentation and stacking are combined, the < and
> signs are used for grouping purposes. To produce the partitioned matrix
(2.11), we enter the following:

2.4. A Partitioned Matrix View of the Simplex Method 57

> A:=Matrix(2,2,[1,3,2,0]):

> B:=Matrix(2,2,[2,1,-1,1]):

> C:=Matrix(2,2,[-5,0,2,6]):

> I2:=IdentityMatrix(2):

> M:=<<A|B>,<C,I2>>;

2.4.3 The Simplex Algorithm as Partitioned Matrix Multiplication

Partitioned matrices offer an important perspective from which to view the
simplex algorithm. We develop the main result by considering the FuelPro LP,

maximize z = c · x
subject to

Ax ≤ b

x ≥ 0,

where c =
[
4 3

]
, A =

1 0
2 2
3 2

, and b =

8
28
32

. The initial tableau, as discussed

in Section 2.1, is shown in Table 2.21.

TABLE 2.21: Initial tableau for FuelPro LP
z x1 x2 s1 s2 s3 RHS
1 -4 -3 0 0 0 0

0 1 0 1 0 0 8
0 2 2 0 1 0 28
0 3 2 0 0 1 32

As a partitioned matrix, Table 2.21 is represented by

[
1 −c 01×3 0

03×1 A I3 b

]
. (2.14)

We refer to (2.14) as the tableau matrix corresponding to Table (2.21), and we
label its rows and columns so that the top row corresponds to row 0 and the
leftmost column to column 0.

At each iteration of the simplex algorithm, we pivot on an entry in the tableau
matrix. As indicated by Table 2.21, the initial pivot is on the entry in row 1,
column 1. The first row operation of this pivot involves adding 4 times row 1 to
row 0. If we let y denote a 1-by-3 row vector inR3 whose ith entry corresponds
to the number of multiples of row i added to row 0, then y = [4, 0, 0] records

58 Chapter 2. The Simplex Algorithm

this first row operation. Moreover, after one iteration of the simplex algorithm,
the new row 0, in matrix form, is given by

[
1 − y · 03×1 − c + yA y yb

]
=

[
1 0 −3 4 0 0 32

]
. (2.15)

_ _

Waypoint 2.4.2. Verify that Equation (2.15) is indeed correct.

_ _

The remaining row operations needed to perform the pivot involve subtract-
ing twice row 1 from row 2 and then three times row 1 from 3. Each of these
row operations can be performed separately on the identity matrix to obtain

E1 =

1 0 0
−2 1 0
0 0 1

 and E2 =

1 0 0
0 1 0
−3 0 1

, respectively.

Matrices, E1 and E2, are examples of elementary matrices, meaning that each
is obtained by performing a single elementary row operation on the identity
matrix. A fundamental property of any elementary matrix, E, is that left
multiplication of a matrix B by E performs on B the elementary row operation
corresponding to E. In the case of E1 and E2, left multiplication of B by the

product M = E2E1 =

1 0 0
−2 1 0
−3 0 1

 has the overall effect of first subtracting

twice row 1 from row 2 and then three times row 1 from 3. In a nutshell, when
the submatrix of (2.14) obtained by deleting its top row is multiplied by M,
the result obtained is precisely that needed to complete the pivot of the first
simplex iteration. In the form of partitioned matrix multiplication,

M ·
[
03×1 A I3 b

]
=

[
M · 03×1 MA MI3 Mb

]

=
[
03×1 MA M Mb

]

=

0 1 0 1 0 0 8
0 0 2 −2 1 0 12
0 0 2 −3 0 1 8

 . (2.16)

The results of (2.15) and (2.16) can now be in the following manner: We con-

struct a partitioned matrix whose first column consists of

[
1

03×1

]
, i.e., column

0 of the tableau matrix, which remains constant from one iteration to the next.

We then augment this first column on the right by the matrix

[
y
M

]
, which re-

2.4. A Partitioned Matrix View of the Simplex Method 59

sults in

[
1 y

03×1 M

]
. This matrix is then right-multiplied by the original tableau

matrix as follows:

[
1 y

03×1 M

]
·
[

1 −c 01×3 0
03×1 A I3 b

]
=

[
1 −c + yA y yb

03×1 MA M Mb

]
. (2.17)

The result of (2.17) is the tableau matrix obtained after one simplex algorithm
iteration is applied to the FuelPro LP. A Maple worksheet Simplex Algorithm
as Partitioned Matrix Multiplication.mw, useful for verifying this fact is
given as follows.

> restart;with(LinearAlgebra):

> c:=Vector[row]([4,3]);
Create row vector with objective coefficients.

c := [4, 3]

> A:=Matrix(3,2,[1,0,2,2,3,2]);
Matrix of constraint coefficients.

A :=

1 0
2 2
3 2

> b:=<8,28,32>;
Constraint bounds.

b :=

8
28
32

> TableauMatrix:=<<UnitVector(1,4) | <-c,A> | <ZeroVector[row](3),
IdentityMatrix(3)> | <0,b>>;
Create initial tableau matrix.

TableauMatrix :=

1 −4 −3 0 0 0 0
0 1 0 1 0 0 8
0 2 2 0 1 0 28
0 3 2 0 0 1 32

> y:=[4,0,0];
y := Vector[row]([4, 0, 0])

> M:=Matrix(3,3,[1,0,0,-2,1,0,-3,0,1]);

M :=

1 0 0
−2 1 0
−3 0 1

60 Chapter 2. The Simplex Algorithm

> S:=<<<1>|y>,<ZeroVector(3)|M>>;
Create partitioned matrix using y and M, which corresponds

to first simplex iteration.

S :=

1 4 0 0
0 1 0 0
0 −2 1 0
0 −3 0 1

> S.TableauMatrix;
Result after first iteration of simplex algorithm.

1 0 −3 4 0 0 32
0 1 0 1 0 0 8
0 0 2 −2 1 0 12
0 0 2 −3 0 1 8

We now consider the second simplex iteration. Relabel y and M in (2.17) as y1

and M1. The second iteration introduces a new 3-by-1 vector, y2, and a new
3-by-3 matrix, M2, that record row operations needed to perform the second
iteration. The tableau matrix obtained after the second iteration is then given
as follows:

[
1 y2

03×1 M2

]
·
([

1 y1

03×1 M1

]
·
[

1 −c 01×3 0
03×1 A I3 b

])

=

([
1 y2

03×1 M2

]
·
[

1 y1

03×1 M1

])
·
[

1 −c 01×3 0
03×1 A I3 b

]

=

[
1 y1 + y2M1

03×1 M2M1

]
·
[

1 −c 01×3 0
03×1 A I3 b

]

=

[
1 −c + (y1 + y2M1)A y1 + y2M1 (y1 + y2M1)b

03×1 M2M1A M2M1 M2M1b

]
. (2.18)

_ _

Waypoint 2.4.3. For the FuelPro LP, use the elementary row operations
performed at the second iteration of the simplex algorithm to verify
that

y2 =
[
0 0 3

2

]
and M2 =

1 0 0
0 1 −1
0 0 1

2

 . (2.19)

Then combine these results with the previously computed values
of y1 and M1 to verify that (2.18) coincides with the tableau matrix
corresponding to Table 2.3 from Section 2.1.

_ _

2.4. A Partitioned Matrix View of the Simplex Method 61

Clearly this process of expressing each tableau as a product of partitioned
matrices continues to further iterations. We summarize the results in Theorem
2.4.1.

Theorem 2.4.1. Consider the LP written in matrix inequality form as

maximize z = c · x
subject to

Ax ≤ b

x ≥ 0,

where A is an m by n matrix, c and x are row and column vectors, respectively,
inRn, and b belongs toRm. Row operations corresponding to the kth iteration
of the simplex algorithm are characterized by left multiplication using a
partitioned (m+1) by (m+1) matrix of the form

[
1 yk

0m×1 Mk

]
, (2.20)

where yk is a row vector in Rm and Mk is an m by m matrix. The tableau

matrix after the kth iteration is the corresponding matrix after the (k − 1)st it-
eration, left multiplied by (2.20). This inductive process leads to the following
representation of the tableau matrix resulting from the kth iteration:

[
1 y

0m×1 M

]
·
[

1 −c 01×m 0
0m×1 A I3 b

]
=

[
1 −c + yA y yb

0m×1 MA M Mb

]
, (2.21)

where

M =Mk ·Mk−1 · · ·M1 and y = y1 + y2M1 + y3M2M1 + . . . + ykMkMk−1 · · ·M1.

For the FuelPro LP, y1 =
[
4 0 0

]
, y2 =

[
0 0 3

2

]
, M1 =

1 0 0
−2 1 0
−3 0 1

, and

M2 =

1 0 0
0 1 −1
0 0 1

2

. It then follows that for k = 2,

y = y1 + y2M1

=
[
4 0 0

]
+

[
0 0 3

2

]

1 0 0
−2 1 0
−3 0 1

=
[
− 1

2 0 3
2

]

62 Chapter 2. The Simplex Algorithm

and

M =M2M1 =

1 0 0
1 1 −1
− 3

2 0 1
2

 .

Using these results, we can form the partitioned matrix

[
1 y

0m×1 M

]
, which, in

turn, provides a means for determining the tableau matrix after the second
iteration.

At this stage, Theorem 2.4.1 is merely a theoretical result, one that does not
affect the manner in which we perform the simplex algorithm. However, it
demonstrates that the quantities y and M alone in (2.21) can be used with an
LP’s initial tableau matrix to determine the entire tableau matrix at a given
iteration. In the next section we exploit this fact and improve the efficiency of
the simplex algorithm.

Exercises Section 2.4

1. Let A =

1 2
3 4
5 6

 and B =

[
1 2
3 4

]
. Compute the product AB by partitioning

both A and B in two different ways.

2. Suppose that A is a 2-by-3 matrix, C and E are row vectors inR3 andR2,

respectively, B and F are 2-by-2 matrices. Let M =

[
A B
C E

]
and N :=

[
At

F

]
,

where At denotes the transpose of A. Calculate MN in terms of A, B, C,
E, and F.

3. Suppose that a and b are scalars, x and y are row vectors in R3, u and
v are (column) vectors in R3, and A and B are 3-by-3 matrices. Let

M =

[
a x
v A

]
and N =

[
b y
u B

]
. Calculate MN in terms of a, b, x, y, u, v, A,

and B.

4. Suppose that A and B are n by n matrices and that 0n denotes the n by n

zero matrix. Show that A and B are invertible if and only if M =

[
A 0n

0n B

]

is invertible.

5. For each of parts (a) and (c) of Exercise 1 in Section 2.1, calculate the
vector, y1, and matrix, M1, corresponding to the first iteration of the
simplex algorithm.

2.4. Exercises Section 2.4 63

6. For the FuelPro LP, calculate the vector, y3, and matrix, M3, correspond-
ing to the third and final iteration of the simplex algorithm. Then, cal-
culate the final tableau matrix, using the vectors and matrices, M1, M2,
M3, y1, y2, and y3.

64 Chapter 2. The Simplex Algorithm

2.5 The Revised Simplex Algorithm

When executed by hand, the simplex algorithm requires writing numerous
tableaus, many of whose values remain unchanged from one iteration to
the next. The purpose of this section is to address this shortcoming of the
algorithm.

2.5.1 Notation

Throughout this section we shall again refer to the standard maximization
problem

maximize z = c · x
subject to

Ax ≤ b

x ≥ 0,

where A is an m-by-n matrix, c and x belong to Rn, and b belongs to Rm. We
will assume that all entries of b are positive. The revised simplex algorithm
builds upon the result of Theorem 2.4.1 from Section 2.4. Namely, the tableau
matrix after the kth iteration, in partitioned matrix multiplication form, is
given by

[
1 y
0 M

]
·
[
1 −c 0 0
0 A Im b

]
=

[
1 −c + yA y yb
0 MA M Mb

]
, (2.22)

where y is a row vector in Rm and M is an m-by-m matrix. The vector y and
matrix M record all row operations used to obtain the kth tableau matrix. To
underscore the fact that these quantities correspond to the kth iteration, we
modify our notation and relabel y and M from Theorem 2.4.1 and (2.22) as yk

and Mk, respectively. We also define the m + 1-by-m+ 1 matrix

Sk =

[
1 yk

0 Mk

]
k = 0, 1, 2, . . . (2.23)

With this notation, the tableau matrix after the kth iteration is the product of
Sk and the initial tableau matrix:

Sk ·
[
1 −c 0 0
0 A Im b

]
. (2.24)

Note that when k = 0, y0 = 01×m, in which case S0 = Im+1, the m + 1-by-
m+ 1 identity matrix. Hence, when k = 0, (2.24) is merely the original tableau
matrix.

2.5. The Revised Simplex Algorithm 65

2.5.2 Observations about the Simplex Algorithm

The route to the revised algorithm begins with the following observations.

1. After the kth iteration of the simplex algorithm, we identify the enter-
ing nonbasic variable by focusing on the nonbasic variable coefficients
in the top row of the tableau. One means of identifying the nonbasic
variable whose coefficient is most negative is to multiply the matrix Sk

by each column vector of the initial tableau matrix that corresponds to
a nonbasic variable. However, only the first entry in each matrix-vector
product is needed to identity the entering nonbasic variable.

2. The entering nonbasic variable and the basic variable it replaces deter-
mine a pivot entry in the column corresponding to the entering variable.
The other entries in this column vector alone dictate the elementary op-
erations required to update the tableau. Furthermore, in columns of the
tableau corresponding to variables that remain basic, all entries below
row 0 remain unchanged after the iteration is complete.

3. The tableau matrix after the (k + 1)st iteration is obtained by applying
to (2.24) the previously described row operations. The matrix Sk+1 is
therefore the result of applying these row operations to Sk.

In the subsequent discussions, we will use the following notation. We let BVk,
where 0 ≤ k ≤ m, be an m+ 1 by 1 column vector of “labels,” whose top entry
is z and whose jth entry is the basic variable associated with row j of the

tableau after the kth iteration. For example, in the FuelPro LP, BV1 =

z
x1

s2

s3

since

the basic variables after the first iteration are given by x1 (row 1), s2 (row 2),
and s3 (row 3).

2.5.3 An Outline of the Method

Using this notation, our algorithm can be outlined in the following steps.

1. At the start, BV0 is made up of the initial basic variables in the order
corresponding to their rows (the slack variables in our discussion), and
S0 = Im+1.

2. At the kth stage, we first compute Sk

[
0
b

]
and then multiply Sk times

the column vector corresponding to each nonbasic variable in the initial
tableau matrix. After computing only the top entry in each matrix-vector
product, we can identify the entering variable, if one exists, as the one
corresponding to the most negative top entry. (If all such top entries are

66 Chapter 2. The Simplex Algorithm

nonnegative, then the algorithm terminates and the final tableau matrix
is given by (2.24).) We then compute the remaining entries in the vector
corresponding to only the entering variable. Call this vector v.

3. We apply the ratio test, just as in the usual simplex algorithm, using

entries in Sk

[
0
b

]
and the vector v computed in the previous step. (We

ignore, however, the ratio in the top entry, which corresponds to row 0
of the tableau matrix.) The result identifies the pivot entry in v. Knowing
the pivot entry in v, we have identified the variable that will become
nonbasic. This allows us to compute BVk+1.

4. Because v corresponds to the column of the entering basic variable, we
must pivot on the entry identified in the previous step. The entries of
v alone dictate the row operations required to carry out this process.
These row operations are performed on Sk to create Sk+1.

5. We now return to step (2).

2.5.4 Application to the FuelPro LP

To illustrate an application of this algorithm, we return to the FuelPro LP.

TABLE 2.22: Initial tableau for FuelPro Petroleum problem

z x1 x2 s1 s2 s3 RHS
1 -4 -3 0 0 0 0
0 1 0 1 0 0 8
0 2 2 0 1 0 28
0 3 2 0 0 1 32

Recall that our convention is to number the top row of the tableau matrix,
excluding labels, as row 0 and the leftmost column as column 0.

1. Initially, BV0 =

z
s1

s2

s3

and S0 = I4.

2. We have that

BV0 = S0

[
0
b

]
=

0
8
28
32

. (2.25)

Since the nonbasic variables are x1 and x2, we compute the top entries in

2.5. The Revised Simplex Algorithm 67

the matrix-vector products of S0 and the corresponding initial tableau
matrix column vectors:

S0

−4
1
2
3

=

−4
�

�

�

and S0

−3
0
2
2

=

−3
�

�

�

,

so that x1 is the entering variable and

v = S0

−4
1
2
3

=

−4
1
2
3

. (2.26)

3. Using the results of (2.25) and (2.26), we compute the respective ratios
as 8, 14, and 32

3 . The result tells us that x1 replaces s1 in the second entry

(i.e., row 1 entry) of BV0 so that BV1 =

z
x1

s2

s3

.

4. We now pivot on the second entry of v =

−4
1
2
3

. This process requires the

following three elementary row operations:

(a) Add 4 times row 1 to row 0;

(b) Add -2 times row 1 to row 2;

(c) Add -3 times row 1 to row 3.

To compute S1, we perform on S0 = I4 these elementary row operations,
in the order they are listed. The result is as follows:

S1 =

1 4 0 0
0 1 0 0
0 −2 1 0
0 −3 0 1

.

This completes the first iteration of the revised method.

5. We begin the second iteration by computing S1

[
0
b

]
. One means of per-

forming this task is of course to carry out the matrix-vector multipli-
cation. Another way is to perform on S0b, the same elementary row

68 Chapter 2. The Simplex Algorithm

operations that derived S1 from S0. Either approach leads to

S1

[
0
b

]
=

32
8
12
8

. (2.27)

The nonbasic variables are x2 and s1. Thus we compute only the top
entries in the matrix-vector products of S0 and the corresponding initial
tableau matrix column vectors:

S1

−3
0
2
2

=

−3
�

�

�

and S1

0
1
0
0

=

4
�

�

�

,

so that x2 is the entering variable and

v = S1

−3
0
2
2

=

−3
0
2
2

. (2.28)

6. The results of (2.27), (2.28), and the ratio test tell us to pivot on the fourth
entry (i.e., on the row 3 entry) in the result from (2.28). Thus x2 replaces
s3 as a basic variable and

BV2 =

z
x1

s2

x2

.

7. The required row operations to pivot on the row 3 entry of (2.28) are as
follows:

(a) Add the negative of row 3 to row 2.

(b) Add 3
2 of row 3 to row 0.

(c) Scale row 3 by 1
2 .

These row operations, when applied to S1, yield

S2 =

1 − 1
2 0 3

2
0 1 0 0
0 1 1 −1
0 − 3

2 0 1
2

,

thereby completing the second iteration.

2.5. Exercises Section 2.5 69

An important observation to make regarding this new notation is that the
matrix Sk is a submatrix of the tableau matrix obtained after the kth iteration.
It is formed using columns of the tableau matrix corresponding to the slack

variables, augmented on the left with the column vector,

1
0
0
0

. Indeed, the

matrices S1 and S2 can easily be identified as submatrices of Tables 2.2 and
2.3, respectively, from Section 2.1.

_ _

Waypoint 2.5.1. Execute a third iteration of the revised simplex algo-

rithm for the FuelPro LP. Your results should indicate that BV3 =

z
x1

s1

x2

and S3b =

46
4
4

10

. Begin to carry out a fourth iteration. You should

discover that when S3 is multiplied by either column vector of the
tableau matrix corresponding to a nonbasic variable, the top entry of
the vector is positive. Hence the algorithm terminates with BV3 = S3b
so that z = 46, x1 = 4, s1 = 4 and x2 = 10.

_ _

In practice, the revised simplex algorithm has a significant advantage over
the original algorithm in that it requires less memory storage, specifically that
needed to record the large number of zeros and ones in columns correspond-
ing to basic variables.

Exercises Section 2.5

Solve each of the following LPs using the revised simplex algorithm.

70 Chapter 2. The Simplex Algorithm

1.

maximize z = 3x1 + 2x2

subject to

x1 ≤ 4

x1 + 3x2 ≤ 15

2x1 + x2 ≤ 10

x1, x2 ≥ 0

2.

maximize z = 4x1 + x2 + 5x3

subject to

2x1 + x2 + 3x3 ≤ 14

6x1 + 3x2 + 3x3 ≤ 22

2x1 + 3x2 ≤ 14

x1, x2, x3 ≥ 0

3.

minimize z = 3x1 − 2x2

subject to

x1 − 2x2 ≤ 2

x1 + x2 ≤ 4

x1, x2 ≥ 0

2.6. Moving beyond the Simplex Method: An Interior Point Algorithm 71

2.6 Moving beyond the Simplex Method: An Interior Point
Algorithm

The revised simplex algorithm represents a slight improvement on the origi-
nal method. However, it does not address a major shortcoming of the simplex
algorithm, namely that the number of iterations can grow exponentially large
with the size of the problem. In this section, we investigate a radically different
approach for solving LPs.

2.6.1 The Origin of the Interior Point Algorithm

The FuelPro LP is a small-scale problem having only two decision variables,
three constraints, and two sign restrictions. If we start with the initial basic
feasible solution at the origin, we arrive at the optimal solution after only three
iterations of the simplex algorithm. Obviously, for larger scale problems, the
number of iterations needed to obtain an optimal solution can become quite
large. How much so was demonstrated in 1972, when Klee and Minty con-
structed a family of LPs, each having n decision variables and n constraints,
where n = 1, 2, 3, . . ., yet requiring 2n simplex algorithm iterations to solve
[19]. In simple terms, the number of iterations needed to solve an LP can be
exponential in the problem size. However, this is an extreme case, and for
most practical applications, far fewer iterations are required.

In 1984, Narendra Karmarkar, an employee of AT&T, devised a method for
obtaining an approximate solution to any LP, one that achieved any desired
degree accuracy in a number of iterations that was no greater than a polyno-
mial in the problem size [18], [10]. His method differs fundamentally from the
simplex algorithm in that it begins with a feasible solution of the LP having
the property that every variable value, be it decision, slack, or excess, is strictly
positive. Such a point is said to belong to the interior of the feasible region.
Through an iterative process, a sequence of feasible solutions is constructed,
which is contained in the feasible region’s interior and which converges to
the optimal solution.

2.6.2 The Projected Gradient

Karmarkar’s original method is beyond the scope of this text, so we instead
focus on a simple variant known as the affine scaling algorithm. Throughout
the discussion, we consider a maximization problem, but to avoid the need
for notation that distinguishes among variable types (e.g., decision, slack,
excess), we express the LP in a form having only equality-type constraints.

72 Chapter 2. The Simplex Algorithm

Namely, we write the LP as

maximize z = c · x (2.29)

subject to

Ax = b

x ≥ 0,

where x belongs to Rn, c is a row vector in Rn, b belongs to Rm, and A is an
m-by-n matrix. For the FuelPro LP, x belongs to R5,

c =
[
4 3 0 0 0

]
, b =

8
28
32

 , and A =

1 0 1 0 0
2 2 0 1 0
3 2 0 0 1

 .

In this notation, x3, x4, and x5 correspond to the slack variables from the
original FuelPro LP, and the matrix A denotes the coefficient matrix from the
original FuelPro LP, augmented with the identity matrix, I3.

To begin the algorithm, we start with a point, x0 that belongs to the interior
of the LP’s feasible region. To say that x0 is feasible means that Ax0 = b. That
it belongs to the interior means each component of x0 is strictly positive, as

opposed to merely nonnegative. For example, x0 =

3
4
5

14
15

satisfies both these

conditions for the FuelPro LP. Finally, we say that x0 belongs to the boundary
of the feasible region if at least one of its components is zero.

We now start at x0 and seek a new point x1 = x0 + △x, whose objective, cx1,
is larger than at x0. An initial choice for △x is ct, the transpose vector of c.
That this choice makes sense can be seen if we observe that ∇(c · x) = ct, the
gradient of z, which “points” in the direction of greatest increase in z. (We
discuss the gradient in much greater detail in Part II of the text.) However,
this choice does not work if we use the feasibility of x0, along with the desired
feasibility of x1. Namely,

b = Ax1

= A
(
x0 + ct

)

= Ax0 + Act

= b + Act.

This result implies that∆x = ct must be a solution of the homogeneous matrix
equation, Ax = 0, or, in other words, ∆x = ct belongs to the null space of the

2.6. Moving beyond the Simplex Method: An Interior Point Algorithm 73

matrix A from (2.29). Such a requirement does not hold for the case of the
FuelPro LP, nor for any LP in which the column vectors of A form a linearly
independent set.

To circumvent this problem, we must therefore choose ∆x so that it “points”
as much as possible in the direction of ct, yet belongs to the null space of A.
One means of accomplishing this task is to project ct onto the null space of A
by means of a matrix transformation.

Definition 2.6.1. Suppose an LP in m constraints and n variables is written
in the form (2.29), where A is an m-by-n matrix. Then the projected gradient
associated with the LP is defined as the quantity

cp = Pct, (2.30)

where P =
(
In − At (AAt)−1

A
)
.

In this definition, we assume that the m-by-m matrix AAt is invertible. This
is true for the FuelPro LP and any matrix A having linearly independent row
vectors.

_ _

Waypoint 2.6.1. For the FuelPro LP, calculate the projection matrix P.
Then use your result to verify that the projected gradient is given by

cp =

6
35
1
7
− 6

35

− 22
25

− 4
5

.

_ _

The projected gradient, cp, and corresponding projection matrix P satisfy three
important properties, whose verifications we leave as exercises:

1. The vector cp belongs to the null space of A. That is, Acp = 0.

2. The matrix P is symmetric, meaning Pt = P.

3. The matrix P satisfies P2ct = Pct.

The following theorem is a consequence of these facts.

Theorem 2.6.1. For α > 0, the objective evaluated at x1 = x0 + αcp is at least
as large as that evaluated x0. In other words, cx1 ≥ cx0.

74 Chapter 2. The Simplex Algorithm

Proof. Using the preceding properties, along with properties of the transpose,
we have

c · x1 − c · x0 = c (x1 − x0)

= c · αcp

= αc
(
Pct

)

= αc
(
P2ct

)

= α
(
cPt

) (
Pct

)

= α
(
Pct

)t (
Pct

)

= α
∥∥∥cp

∥∥∥2

≥ 0.

�

2.6.3 Affine Scaling

Theorem 2.6.1 demonstrates that for α > 0, x1 = x0 + αcp has an objective
value at least as large as that of x0 and that this value increases as α increases.
Since cp belongs to the null space of A, Ax1 = Ax0 + αAcp = Ax0b. However,
this fact alone does not guarantee that x1 is feasible. For if α increases by too
much, there exists the possibility that a component of x1 becomes negative,
in which case x1 does not satisfy the sign restrictions. The key then is to allow
α to increase, but not by too much.

The FuelPro LP illustrates the delicacy of this situation. Using x0 =

3
4
5

14
15

and

the result from the previous Waypoint, we have

x1 = x0 + αcp (2.31)

=

3
4
5
14
15

+ α

6
35
1
7
− 6

35

− 22
25

− 4
5

=

3 + 6
35α

4 + 1
7α

5 − 6
35α

14 − 22
25α

15 − 4
5α

.

2.6. Moving beyond the Simplex Method: An Interior Point Algorithm 75

The last component of this vector dictates that α can increase by no more than
18 3

4 before x1 violates the sign restrictions.

Setting α = 18
3

4
results in

x1 =

87
14
187
28
25
14
31
14
0

, (2.32)

with corresponding objective value z = c · x1 =
1257

28 ≈ 44.9.

This objective value is much larger than z = c · x0 = 24 and much closer to
the known optimal value of z = 46. Moreover, the last component of x1 is
zero, implying that x1 corresponds to a point on the boundary of the original
LP’s feasible region where the third constraint, 3x1 + 2x2 ≤ 32, is binding.

However, the values of the original LP’s decision variables, x1 =
87

14
≈ 6.21,

and x2 =
187

28
≈ 6.67, are far from close to the known optimal solution, x1 = 4

and x2 = 10.

Repeating this entire process by computing a new value x2 from x1 in the
same manner we computed x1 from x0 will not improve the quality of the
estimate. This follows from observing that the last component of x2 = x1+αcp

is −4

5
α. For x2 to remain feasible, α must equal zero, whence x2 = x1.

This result demonstrates a fundamental problem we must overcome, which
can be summarized in the following terms. The quantity α can be viewed as
a “step size,” which measures what fraction of the projected gradient, cp, we
use to obtain the next approximation, xk+1, from the current one, xk. On the
one hand, we desire a large step size so that the difference in objective values,
cxk+1 − cxk = αc · cp, is significant. On the other hand, if the step size, α, is too
large, a component of xk+1 = xk + αcp becomes negative so that xk+1 violates
the sign restrictions.

The key to overcoming this problem is to perform a change of variables at
each iteration. To compute xk+1, we first use the previous iterates, x0, x1, . . . , xk,
to create a completely new LP. In this new LP, the initial value, x̃0, which
corresponds to xk in the original LP, lies far enough from the boundary of
the feasible region so that if we set it to the initial value in new LP, we are
permitted to select a large step size. After using this large step size to calculate
a better approximate solution to the new LP, we “change back” variables, so
to speak, to determine the corresponding value of xk+1.

76 Chapter 2. The Simplex Algorithm

The change of variables we use is a simple matrix transformation involving an
invertible, diagonal matrix, D, which we define momentarily. The commuting
diagram shown in Figure 2.5 illustrates our strategy.

New LP: max z = c ·Dx̃

such that ADx̃ = b, x̃ ≥ 0

Set x̃0 = D−1xk −−−−−→ Compute x̃1 via
projected gradient of ADx

y
xx̃=D−1x x=Dx̃

y
xCentering Transformation Transform back to original LP

y
x

y

Original LP: max z = c · x

such that Ax = b, x ≥ 0

starting with xk

Repeat the process
←−−−−−−−−−−−−−−−−−− xk+1 = Dx̃1

FIGURE 2.5: Commuting diagram illustrating change of variables.

2.6. Moving beyond the Simplex Method: An Interior Point Algorithm 77

The matrix D that we elect to use has the effect of “centering” x̃k in the feasible
region of the new LP. It is an n-by-n matrix defined by

D =

xk,1 0 . . . 0
0 xk,2 . . . 0
...

. . .
...

0 0 . . . xk,n

, (2.33)

where xk,i, 1 ≤ i ≤ n denotes the ith component of xk.

Here are two important facts regarding the matrix D.

• Since every component of xk is strictly positive, D is invertible and

D−1 =

x−1
k,1

0 . . . 0

0 x−1
k,2

. . . 0
...

. . .
...

0 0 . . . x−1
k,n

.

• In the new LP, each component of x̃0 = D−1xk equals one. This means
that each component of x̃0 is one unit from the boundary of the interior
of the new LP. To emphasize this crucial fact, we use the notation, 1n to
denote the vector x̃0.

2.6.4 Summary of the Method

Here then is an overview of our interior point algorithm.

1. Suppose xk, where k ≥ 0, lies in the interior of the feasible region of
the original LP, meaning Axk = b and each component of xk is strictly
positive.

2. We construct a diagonal matrix, D, whose diagonal values are the com-
ponents of xk.

3. In the new LP, the objective coefficient is given by c̃ = cD and the
coefficient matrix by Ã = AD. We compute the projected gradient of c̃
for the new LP. That is, we project c̃ onto the null space of Ã and set

c̃p = Pc̃t, (2.34)

where

P =
(
In − Ãt

(
ÃÃt

)−1
Ã
)
.

78 Chapter 2. The Simplex Algorithm

4. Since x̃0 = e, where e is the vector in Rn all of whose entries are one, α
can be at most the reciprocal of the absolute value of the most negative
entry of c̃p before an entry of x̃0 + αc̃p becomes negative. We therefore
set α to equal this quantity.

5. Define

x̃1 = e + λαc̃p,

where λ is a fixed quantity slightly less than one. The value of λα
controls the stepsize used in the new LP.

6. Let xk+1 = Dx̃1, the (k + 1)st iterate in the original LP.

7. Return to Step 1 and repeat the process.

2.6.5 Application of the Method to the FuelPro LP

We now demonstrate the details for performing one iteration of the algorithm
for the FuelPro LP.

1. We start with the initial value x0 =

3
4
5

14
15

.

2. Using x0,

D =

3 0 0 0 0
0 4 0 0 0
0 0 5 0 0
0 0 0 14 0
0 0 0 0 15

.

3. In the new LP, c̃ = cD =
[
12 12 0 0 0

]
and

Ã = AD =

3 0 5 0 0
6 8 0 14 0
9 8 0 0 15

. These quantities are then used to con-

struct the projection matrix, P, and projected gradient, c̃p. The second

of these is given by c̃p ≈

4.57
5.85
−2.74
−5.30
−5.86

.

4. The last entry of c̃p indicates that α = 1/5.86 ≈ .1706, the reciprocal of

2.6. Moving beyond the Simplex Method: An Interior Point Algorithm 79

the absolute value of most negative component of c̃p. Using this value
along with λ = .75, we compute x̃1:

x̃1 = x̃0 + λαc̃p

≈

1.58
1.75
.65
.32
.25

5. In the original LP,

x1 = Dx̃1 ≈

4.75
6.99
3.25
4.50
3.75

,

which has corresponding objective value, c · x1 ≈ 40.

2.6.6 A Maple Implementation of the Interior Point Algorithm

The affine scaling method described in this section can be implemented
quite easily using Maple. What follows is a worksheet, Interior Point Al-
gorithm.mw, that computes the four iterations.

> restart;with(LinearAlgebra):

> c:=Vector[row]([4,3,0,0,0]);
Create row vector with objective coefficients.

c := [4, 3, 0, 0, 0]

> A:=Matrix(3,5,[1,0,1,0,0, 2,2,0,1,0, 3,2,0,0,1]);
Matrix of constraint coefficients.

A :=

1 0 1 0 0
2 2 0 1 0
3 2 0 0 1

> b:=<8,28,32>;
Constraint bounds.

b :=

8
28
32

> N:=4:lambda:=.75:
Set number of iterations, N, and parameter lambda.

80 Chapter 2. The Simplex Algorithm

> x:=array(0..N):
Array of iteration values.

> x[0]:=<3,4,5,14,15>;
Set initial value.

x0 :=

3
4

15
14
15

> for i from 0 to (N-1) do
d:=DiagonalMatrix(convert(x[i],list)):

Determine transformation matrix.

∼ A:= A.d: ∼ c:=c.d:
Calculate coefficient matrix and objective coefficients for

new LP.

P:=IdentityMatrix(5)-

Transpose(∼ A).MatrixInverse(∼ A.Transpose(∼ A)).∼ A:
The projection matrix.

cp:=P.Transpose(∼ c):
Determine projected gradient.

alpha:=(abs(min(seq(cp[j],j=1..5))))ˆ(-1):

Find alpha.

x[i+1]:=d.(<1,1,1,1,1>+lambda*alpha*cp):

Determine next iterate.

end do:

> for i from 0 to N do print(x[i],Transpose(c).x[i]):end do:
Print sequence of iterates, together with corresponding objective

values.

For the sake of brevity, we do not print here the output that appears at the
end of this worksheet. Instead, we summarize these results in Table 2.23 but
list only the entries of each xi that correspond to the two decision variables,
x1 and x2, in the original FuelPro LP.

TABLE 2.23: Results of applying the interior point algorithm to the FuelPro
LP

n (xn,1, xn,2) z
0 (3, 4) 24
1 (4.75, 7) 40
2 (5.1, 7.95) 44.07
3 (4.66, 8.9) 45.32
4 (4.1, 9.79) 45.76

2.6. Exercises Section 2.6 81

The results in Table 2.23 dictate that convergence to the optimal solution takes
place very quickly. A graphical illustration of this phenomenon is depicted
in Figure 2.6.

x0

x1

x2

x3

x4

FIGURE 2.6: Interior algorithm iterates for FuelPro LP.

Since 1984, interior point methods have continually evolved and improved
in their efficiency. Interestingly, after a great deal of controversy centered
on the issuance of patents for what could be viewed as newly developed
mathematical tools, AT& T applied for, and received a patent for Karmarkar’s
method in 1988. This patent expired in 2006.

Exercises Section 2.6

1. Suppose that A is an m-by-n matrix whose rows form a linearly inde-
pendent set of vectors. Show that the m-by-m matrix AAt is invertible.
(Hint: Start with the homogeneous matrix equation AAtx = 0. Multiply
each side by xt, the transpose vector of x. Use the result to establish∥∥∥Atx

∥∥∥ = 0, and then apply the Invertible Matrix Theorem.)

82 Chapter 2. The Simplex Algorithm

2. Show that the projection matrix, P, and projected gradient, cp, as given
in Definition 2.6.1 satisfy the following three properties:

(a) The vector cp belongs to the null space of A. That is, Acp = 0.

(b) The matrix P is symmetric, meaning that Pt = P.

(c) The matrix P satisfies P2ct = Pct.

3. Assume in the FuelPro LP that x0 =

3
4
5
14
15

, which corresponds to

[
3
4

]
in

x1x2-plane. If we denote x̃k =

[
x̃1

x̃2

]
, sketch the image in the x̃1x̃2-plane of

each basic feasible solutions of the FuelPro LP under the first centering
transformation D−1. Show that the region in the x̃1x̃2-plane enclosed by
these points coincides with the feasible region of the LP,

maximize z = c̃x̃

subject to

Ãx̃ ≤ b

x̃ ≥ 0,

where Ã and c̃ are as defined in step 3 of Section 2.6.5.

4. Approximate, to three decimal places, the solutions of the following
LPs.

(a)

maximize z = 3x1 + 2x2

subject to

x1 ≤ 4

x1 + 3x2 ≤ 15

2x1 + x2 ≤ 10

x1, x2 ≥ 0

(b)

maximize z = 4x1 + x2 + 5x3

subject to

2x1 + x2 + 3x3 ≤ 14

6x1 + 3x2 + 3x3 ≤ 22

2x1 + 3x2 ≤ 14

x1, x2, x3 ≥ 0

2.6. Exercises Section 2.6 83

5. Use the interior point algorithm to approximate the solution of the
Foraging Herbivore Model, from Exercise 4 of Section 1.1.

Chapter 3

Standard Applications of Linear
Programming

3.1 The Diet Problem

Within the field of linear programming, there exist certain classes of closely
related problems. In the vast majority of them, efficiently formulating the LP
itself so that it can be solved using Maple or other available software is a
challenge. In this chapter, we investigate several problem types.

3.1.1 Eating for Cheap on a Very Limited Menu

A sandwich shop has a menu consisting of four items: turkey breast on a bun,
a club sandwich, a veggie sub, and a breakfast sandwich. Nutritional data for
each is summarized in Table 3.1.

TABLE 3.1: Sandwich nutritional data
Sandwich Turkey Breast Club Veggie Sub Breakfast Sandwich
Calories 280 320 230 470
Fat (gm.) 4.5 6 3 19
Cholesterol (gm.) 20 35 0 200
Carbohydrates (gm.) 46 47 44 53
Fiber (gm.) 5 5 5 5
Protein (gm.) 18 24 9 28
Vitamin A (pct. RDA) 8 8 8 10
Vitamin C (pct. RDA) 35 35 35 15
Calcium (pct. RDA) 6 8 6 25
Iron (pct. RDA) 25 30 25 25

Daily nutritional guidelines for each category in Table 3.1 are summarized
in Table 3.2. The listed minimum requirements for vitamins A and C, cal-
cium, and iron are based upon the assumption that deficiencies are remedied
through beverages and daily vitamin supplements.

Suppose that sandwiches cost $6.00 (turkey breast), $5.00 (club sandwich),

85

86 Chapter 3. Standard Applications of Linear Programming

TABLE 3.2: Daily nutritional guidelines

Category Daily Minimum Daily Maximum
Calories 2000 3000
Fat (gm.) 0 65
Cholesterol (gm.) 0 300
Carbohydrates (gm.) 50 300
Fiber (gm.) 25 50
Protein (gm.) 50 200
Vitamin A (pct. RDA) 40 200
Vitamin C (pct. RDA) 40 200
Calcium (pct. RDA) 40 200
Iron (pct. RDA) 40 200

$3.50 (veggie sub), and $5.00 (breakfast sandwich). We seek to minimize the
total daily cost of maintaining a diet that is comprised solely of these four
sandwiches and fulfills the previously stated nutritional guidelines. We will
permit partial consumption of any sandwich and assume that the purchase
price of any such sandwich is pro-rated on the basis of the fraction consumed.
For example, consumption of one-half of a club will contribute only $2.50 to
total cost. Certainly this last assumption is unrealistic in that the number of
purchased sandwiches of each type must be integer-valued. In Chapter 5, we
will learn how to account for this fact.

3.1.2 The Problem Formulation and Solution, with Help from
Maple

The LP whose solution minimizes total cost in this situation will have nu-
merous constraints, and listing these constraints individually within Maple’s
LPSolve can prove extremely tedious. We therefore seek a more efficient man-
ner for constructing them. Key to doing so are Maple’s array, sequence, and
adding commands as introduced in Section C.4. What follows is merely one
of many means of combining these commands in a manner that leads to the
correct LP solution.

We first define decision variables, x1, x2, x3, and x4, to be the number of con-
sumed turkey breast sandwiches, club sandwiches, veggie subs, and break-
fast sandwiches, respectively. Since these decision variables will appear in
our objective function and throughout our constraints, we define them in
Maple through use of an array as follows:

> restart: with(LinearAlgebra):with(Optimization):

> x:=array(1..4);

x := array(1..4, [])

3.1. The Diet Problem 87

Each column of Table 3.1 can be viewed as a vector inR10 recording nutritional
information for a particular sandwich. One means of storing this information
in Maple is to first construct a “nutrition vector” for each sandwich and then
to use the resulting vectors to form a “nutrition matrix.” The following syntax
performs this task:

> TurkeyBreast:=<280, 4.5, 20, 46, 5, 18, 8, 35, 6, 25>:

> Club:=<320,6,35,47,5,24,8,35,8,30>:

> VeggieSub:=<230,3,0,44,5,9,8,35,6,25>:

> BreakfastSandwich:=<470,19,200,53,5,28,10,15,25,25>:

> A:=<TurkeyBreast | Club | VeggieSub | BreakfastSandwich>:

In a similar manner, each column of Table 3.2 can also be entered as a vector
in R10. The terms Maximum, maximum, max, as well as corresponding terms for
minima, have reserved meanings in Maple, so we must choose names for these
vectors with care. Here we call them MinimumAmountand MaximumAmount.The
first of these is given as follows:

> MinimumAmount :=<2000,0,0,50,25,50,40,40,40,40>:

The vector MaximumAmount is defined similarly.

While the total cost, in dollars, can be expressed in Maple as
6*x[1]+5*x[2]+3.5*x[3]+5*x[4], we will enter sandwich costs in the form
of a vector. Doing so illustrates a convenient tool for larger-scale problems.

> Prices:=<6,5,3.5,5>:

> TotalCost:=add(Prices[i]*x[i],i=1..4);

TotalCost := 6x1 + 5x2 + 3.5x3 + 5x4

Constraints can be formulated in terms of the array, x, the matrix, A, and
the vectors MinimumAmount and MaximumAmount. For example, the maximum
number of calories can be expressed as follows:

> add(A[1,j]*x[j],j=1..4)<=3000;

280x1 + 320x2 + 230x3 + 470x4 ≤ 3000

We wish to ensure that analogous guidelines hold for other categories. One
means of accomplishing this efficiently in Maple is through use of the se-
quence command, seq. What follows is syntax illustrating how this command
can be used to produce all model constraints:

88 Chapter 3. Standard Applications of Linear Programming

> MinimumGuidelines:=
seq(MinimumAmount[i]<=add(A[i,j]*x[j],j=1..4),i=1..10):

> MaximumGuidelines:=
seq(add(A[i,j]*x[j],j=1..4)<=MaximumAmount[i],i=1..10):

These preceding two command lines produce the LP constraints in the form
of two sequences, whose results can be used to create the constraint list for
purposes of invoking the LPSolve command. Here is the command line that
combines the previous results to determine the optimal solution of the LP.

> LPSolve(TotalCost,[MinimumGuidelines,MaximumGuidelines],
assume=’nonnegative’);

_ _

Waypoint 3.1.1. Use Maple to verify that the cheapest, four-sandwich
diet costs approximately $29.81 per day and consists of no turkey
breast sandwiches, approximately 5.14 club sandwiches, .314 veggie
subs, and .6 breakfast sandwiches.

_ _

Maple structures of sequences, sums, vectors, matrices, and arrays all played
a role in solving the diet LP in this section. It is important to note that in
many problems more than one structure can be used to perform a task. For
example, Priceswas entered as a vector but, for purposes of computing total
cost, could also be entered as a list, Prices:=[6,5,3.5,5]. Choosing this
approach would not affect subsequent command lines. A matrix was chosen
over an array to record nutritional data for all sandwiches merely due to
the fact nutritional information for each sandwich was presented in tabular
form (as one would expect from reading product labels) and could be easily
entered as a vector. These vectors were combined to produce the matrix A. In
other problem types, use of an array is more appropriate. When confronted
with choices such as these, two important points to be bear in mind are
the following: Which method permits the easiest entry of data relevant to
the problem, and which method permits the greatest flexibility in terms of
needed operations for constructing the LP? For example, a Matrix can be
multiplied by a column Vector, but not by a list structure, unless the list is
first converted to a Vector through use of the convert command.

3.1. Exercises Section 3.1 89

Exercises Section 3.1

1. Most nutritional guidelines stipulate that sodium intake be limited daily
to 2400 milligrams. Sodium amounts for the four sandwiches are given
in Table 3.3. Show that if the limit on daily sodium intake is incorporated
into the four-sandwich diet model, then the LP becomes infeasible.
Estimate the minimum daily sodium intake for which a feasible solution
exists.

TABLE 3.3: Sandwich sodium amounts
Sandwich Sodium Amount (mg.)
Turkey Breast 1000
Club 1290
Veggie Sub 500
Breakfast Sandwich 1500

2. Suppose we desire to follow a modified four-sandwich diet that seeks
to minimize carbohydrate intake subject to fulfilling nutritional guide-
lines for only protein, vitamin A, vitamin C, calcium, and iron while
consuming at least 40 grams of fiber per day. What four-sandwich diet
accomplishes this goal? What is the corresponding carbohydrate intake?

90 Chapter 3. Standard Applications of Linear Programming

3.2 Transportation and Transshipment Problems

Many linear programming problems focus on cost-effective ways to transport
goods and services of one type or another.

3.2.1 A Coal Distribution Problem

Three coal mines transport coal to four different municipal power plants.
Suppose the mines, which we label as Mine 1, 2, and 3, have respective annual
productions of 500,000; 500,000; and 400,000 tons. The four municipalities,
Cities 1, 2, 3, and 4, have corresponding annual demands of 400,000; 300,000;
500,000; and 200,000 tons. To each combination of a mine and city, there is a
cost per unit amount associated with transporting coal from the mine to the
city. Table 3.4 summarizes costs, in units of millions of dollars per hundred
thousand tons, for each different mine-city combination.

TABLE 3.4: Mine-city transportation costs

Mine/City City 1 City 2 City 3 City 4
Mine 1 2 3 2 4
Mine 2 4 2 2 1
Mine 3 3 4 3 1

We seek to construct an LP whose objective is to minimize the total cost
of transporting the coal from the mines to the cities. Because the total coal
amount produced by the mines equals the combined demand of the cities, this
LP constitutes a balanced transportation problem. Clearly if the total demand
exceeds total available supply, any LP model attempting to minimize cost
will prove infeasible. The case when total supply exceeds total demand is
addressed in the exercises.

We begin by defining xi j, where 1 ≤ i ≤ 3 and 1 ≤ j ≤ 4, as the amount of coal,
in hundreds of thousands of tons, transported from Mine i to City j. Because
of the double subscript nature of these decision variables, we enter them as
an array in Maple:

> x:=array(1..3,1..4);

array(1..3, 1..4, [])

If the entries of Table 3.4 are also entered as a 3-by-4 array (matrix), labeled
Cost, the total transportation cost, in millions of dollars, is computed as
follows:

3.2. Transportation and Transshipment Problems 91

> Cost:=Matrix(3,4,[2,3,2,4,4,2,2,1,3,4,3,1]):

> TotalCost:=add(add(Cost[i,j]*x[i,j],i=1..3),j=1..4);

TotalCost := 2x1,1 + 3x1,2 + 2x1,3 + 4x1,4 + 4x2,1

+ 2x2,2 + 2x2,3 + x2,4 + 3x3,1 + 4x3,2 + 3x3,3 + x3,4

As was the case for the Four-Sandwich Diet Problem from Section 3.1, the
seq and add commands, can be combined to ensure that supply and demand
constraints are met. For example, suppose that the cities’ respective demand
amounts are defined by the list (or array or vector) named Demand. Then
seq(add(x[i,j],i=1..3) >=Demand[j], j=1..4) is a sequence of four in-
equalities, which, if satisfied, ensures that demand is met.

_ _

Waypoint 3.2.1. In a manner similar to that used for demand, define
a list, Supply, and use it to construct a sequence of inequalities that
reflects the amount of supply available at each mine. Combine this
sequence with that for demand to form a list of constraints for this
transportation LP. Then solve the LP using Maple’s LPSolve com-
mand. Immediately after the LPSolve command, enter the following
commands, which assigns the decision variables their solution values
and prints these values in tabular form. Your results should agree
with what appears below.

> assign(%[2]): # Assign the decision variables to
their solution values.

> print(x): # Print the solution array in tabular
format.

2 0 3 0
0 3 2 0
2 0 0 2

_ _

3.2.2 The Integrality of the Transportation Problem Solution

The solution of the Coal Distribution Problem has the property that all de-
cision variables are integer-valued. This is a trait we desire of LPs in a wide
variety of contexts. In many situations we are forced to use the techniques of
integer linear programming, which form the basis of discussion in Chapter
5. Fortunately, the nature of the Coal Distribution Problem, in particular the
form of its constraints, guarantees, a priori, an integer-valued solution.

92 Chapter 3. Standard Applications of Linear Programming

To explain this phenomenon in terms of matrix theory, we start with the
general transportation problem consisting of m supply points and n demand

points. Let s =

s1

s2

...
sm

and d =

d1

d2

...
dn

denote vectors in Rm and Rn, whose entries

record the supply amounts and demand amounts, respectively, at each of the
supply points and demand points. Assume further that entries in these vectors

are all integer-valued and that the problem is balanced, meaning

m∑

i=1

si =

n∑

j=1

d j.

If xi j, where 1 ≤ i ≤ m and 1 ≤ j ≤ n, denotes the amount of goods delivered
from supply point i to demand point j and if ci j denotes the corresponding
cost, then the balanced transportation problem may be stated as

minimize z =

m∑

i=1

n∑

j=1

ci jxi j (3.1)

subject to
n∑

j=1

xi j = si 1 ≤ i ≤ m

m∑

i=1

xi j = d j 1 ≤ j ≤ n

xi j ≥ 0 for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Observe that we may express each constraint as an equality due to the bal-
anced nature of the LP.

The constraints of LP (3.1) can be written compactly if we introduce new
notation. More specifically, let us define 01×n and 11×n to be the row vectors in
R

n of all zeros and all ones, respectively. Then the constraints of (3.1) can be
expressed in partitioned matrix equation form as follows:

m blocks

m blocks
︷ ︸︸ ︷

11×n 01×n 01×n · · · 01×n

01×n 11×n 01×n · · · 01×n

...
...

...
...

...

01×n 01×n
. . . 01×n 11×n

In In · · · In In

·

x11

...
x1n

x21

x22

...
xmn

=

[
s
d

]
. (3.2)

3.2. Transportation and Transshipment Problems 93

The (m + n) by mn coefficient matrix in (3.2) takes a very special form that
guarantees each of its square submatrices has determinant equal to 0 or ±1.
The proof of this fact uses basic determinant properties, and we do not include
it here. ([14])

Because the LP is balanced, the equation corresponding to the bottom row
of matrix equation (3.2) is merely the sum of the equations corresponding to
the first m rows, less the sum of those corresponding to rows m + 1 through
m + n. It follows that (3.2) can be rewritten as

Ax = b, (3.3)

where A is an m + n − 1 by mn matrix, x is a vector in Rmn consisting of mn
decision variables, and b is a vector Rm+n−1 having integer-valued entries.

Our standard procedure for calculating a basic solution of (3.1) requires us to
set mn − (m + n − 1) = (m − 1)(n − 1) decision variables to zero and solve for
the remaining basic variables, assuming that the columns of A corresponding
to the basic variables form a linearly independent set. Of course, the square
matrix formed using these columns is an invertible submatrix of the coefficient
matrix in (3.2), and hence must have determinant equal to ± = 1. We leave it
as an exercise to show that any matrix equation, Ax = b, in which A and b
have integer entries and det A = ±1, leads to a solution vector x whose entries
are also integer-valued. Thus, we arrive at the following theorem.

Theorem 3.2.1. The decision variable values in any basic solution of a trans-
portation problem are integer-valued, provided the problem is balanced and
the demand and supply amounts are themselves integer-valued. Hence, the
decision variable values in the optimal solution of such an LP are also integer-
valued.

3.2.3 Coal Distribution with Transshipment

We now consider a variant on our coal shipment problem by adding two
intermediate points between the mines and the cities. In the context of this
problem, these intermediate points, sometimes referred to as transshipment
points, can be thought of as railyard facilities where shipments from dif-
ferent mines are combined and then delivered to each of the four cities. In
this situation, there exists a cost per unit amount to transfer coal from each
mine to each transshipment point and from each transshipment point to each
city. These costs, in millions of dollars per one hundred thousand tons, are
summarized in Tables 3.5 and 3.6, where we have labeled the transshipment
points as Station 1 and Station 2.
To minimize the cost of transporting the coal from the mines to the cities, we
view the problem as one combining two separate transportation problems. In
the first of these, transshipment points are viewed as “demand points”; in the

94 Chapter 3. Standard Applications of Linear Programming

TABLE 3.5: Mine-railyard transportation costs

Mine/Station Station 1 Station 2
Mine 1 4 3
Mine 2 5 4
Mine 3 2 4

TABLE 3.6: Railyard-city transportation costs

Station/City City 1 City 2 City 3 City 4
Station 1 3 5 4 3
Station 2 4 3 4 4

second, they constitute “supply points.” Combined with these two problems
are constraints, sometimes referred to as conservation constraints, which reflect
the requirement that the amount of coal entering a transshipment point is the
same as the amount leaving.

In a manner similar to that for the original problem, we use arrays to record the
shipment amounts between the various points. We define xi j where 1 ≤ i ≤ 3
and 1 ≤ j ≤ 2, as the amount of coal transported from Mine i to Station j.
Similarly, y jk, where 1 ≤ j ≤ 2 and 1 ≤ k ≤ 4, denotes the amount transported
from Station j to City k. In Maple we have:

> x:=array(1..3,1..2):

> y:=array(1..2,1..4):

Entries from Tables 3.5 and 3.6 can be entered as two matrices, which we label
CostTo and CostFrom. Using them, we construct the total transportation cost
as follows:

> CostTo:=Matrix(3,2,[4,3,5,4,2,4]):

> CostFrom:=Matrix(2,4,[3,5,4,3,4,3,4,4]):

> TotalCost:=add(add(CostTo[i,j]*x[i,j],i=1..3),j=1..2)+
add(add(CostFrom[j,k]*y[j,k],j=1..2),k=1..4):

Each constraint for the LP belongs to three one of the three categories:

1. The supply at each mine is the sum of the amounts transported from
that mine to each of the stations.

2. The demand at each city is the sum of the amounts transported to that
city from each of the stations.

3. Conservation constraints that guarantee the total amounts transported
into and out of each station are equal.

3.2. Exercises Section 3.2 95

Using the arrays x and y and the Demand and Supply lists defined in the first
problem, we express these constraints in Maple as follows:

> SupplyConstraints:=seq(add(x[i,j],j=1..2) <=Supply[i],i=1..3):

> DemandConstraints:=seq(add(y[j,k],j=1..2) >=Demand[k],k=1..4):

> NetFlowConstraints:=
seq(add(x[i,j],i=1..3)=add(y[j,k],k=1..4),j=1..2):

_ _

Waypoint 3.2.2. Use the previously defined sequences to form a list
of constraints and determine the entries of x and y that minimize total
costs in this transshipment model.

_ _

Exercises Section 3.2

1. For the coal model without transshipment, suppose that demand at City
3 decreases from 500,000 to 300,000 tons, in which case the problem is no
longer balanced. Determine the least costly manner in which to deliver
coal from the mines to cities and still meet demand. Where will the
excess coal remain under this scenario? (Hint: Define an “imaginary”
City 5, whose demand is the excess of total supply over total demand,
i.e., 200,000 tons. Set to zero the transportation cost from each mine to
City 4.)

2. Prove the assertion immediately prior to Theorem 3.2.1. Namely, if A is
a square, n by n having determinant equal to±1 and if both A and b ∈ Rn

have integer-valued entries, then the solution vector of x of Ax = b also
has integer-valued entries. (Hint: Use Cramer’s Rule. See Appendix B.)

3. Import substitution refers to a nation’s practice of producing a certain
commodity domestically so as to reduce the amount of the commodity
imported from abroad. 1 Suppose a country desires to reduce its depen-
dence upon overseas sources for corn and soy. The country has three
available plantations for producing a mixed crop of these items, which
are then transported to four different markets. The plantations are la-
beled 1, 2, and 3, and have 9, 10, and 10 acres available, respectively, for
growing either crop. The demand for corn and soy at each of the four
markets is summarized in Table 3.7.

1Based upon Blandford, Boisvert, and Charles [8], (1982).

96 Chapter 3. Standard Applications of Linear Programming

TABLE 3.7: Market demand for corn and soy, measured in tons

Market/Commodity Corn Soy
1 2 5
2 5 8
3 10 13
4 17 20

Each plantation produces 2 tons of corn per acre and 4 tons of soy per
acre. The costs of growing corn and soy are $200 per acre and $300 per
acre, respectively, regardless of the plantation. The cost of transporting
either good from plantation i to market j is 20i + 30 j dollars per ton.

(a) Suppose crop 1 represents corn and crop 2 represents soy. Let xi jk,
where 1 ≤ i ≤ 3, 1 ≤ j ≤ 4, and 1 ≤ k ≤ 2, represent the amount
of crop k, measured in tons, that is transported from plantation i
to market j. Let yik, where 1 ≤ i ≤ 3, and 1 ≤ k ≤ 2, represent the
acreage at plantation i that is devoted to producing crop k. Use
this notation to determine an expression that represents the total
cost due to growing the two crops on the three plantations and
transporting them to the different markets.

(b) Determine a sequence of inequalities that stipulates the acreage
supply at each plantation is not exceeded.

(c) Determine a second sequence of inequalities that guarantees de-
mand at each market is met.

(d) Determine a third sequence of inequalities that guarantees the
amount of each crop, in tons, transported from a given plantation
to a given market does not exceed the available amount of the crop
that can be produced at that plantation.

(e) Determine the values of the quantities xi jk and y jk that minimize
total cost due to import substitution of corn and soy.

3.3. Basic Network Models 97

3.3 Basic Network Models

Transportation and transshipment problems are special cases of the minimum
cost network flow problem, which we now describe in its general form.

3.3.1 The Minimum Cost Network Flow Problem Formulation

The minimum cost network flow problem arises from a collection of n nodes
each pair of which is connected by a directed arc. To the arc starting at node
i and ending at node j, where 1 ≤ i, j ≤ n we may associate two quantities,
an arc flow capacity, Mi j, and a cost per unit flow along the arc, Ci j. Each node
i is assigned a real number, fi which measures the net outflow at that node.
If fi > 0, we view node i as a source, if fi < 0 it is a sink, and if fi = 0, it is a
transshipment point.

From a physical perspective, we may view the network as modeling the flow
of fluid through pipes. Sources and sinks are locations from which fluid enters
and exits the system, with rate of fluid entry or exit at node i measured by
fi. Arcs represent pipes, with Mi j denoting the maximum possible fluid flow
through the pipe starting at node i and ending at node j. Figure 3.1 illustrates
flow between two nodes. Note that there exist two flow capacities between
these two nodes, Mi j and M ji, and that these values need not be equal. For
example, if Mi j > 0 and M ji = 0, then flow is permitted only in the direction
from node i and to j but not in the reverse direction.

j

i
fi

f jMi j

M ji

FIGURE 3.1: Two nodes in the minimum cost flow problem.

The minimum cost network flow problem is the LP that seeks to determine
the flow values between nodes that minimize the total cost of fluid flow
through the network, subject to the flow constraints and the assumption that
conservation of flow occurs at each node. By conservation of flow we mean
the combined net outflow at node i due to fluid both flowing in from and also
flowing out to adjacent nodes is given by fi. If xi j, where 1 ≤ i, j ≤ n, is the
decision variable representing the flow from node i to node j, the minimum
cost network flow LP is given by (3.4).

98 Chapter 3. Standard Applications of Linear Programming

minimize z =

n∑

i=1

n∑

j=1

Ci jxi j (3.4)

subject to
n∑

j=1

xi j −
n∑

j=1

x ji = fi, for 1 ≤ i ≤ n

xi j ≤Mi j for 1 ≤ i, j ≤ n

xi j ≥ 0 for 1 ≤ i, j ≤ n.

Note that the conservation constraints, when summed over i, lead to

n∑

i=1

fi =

n∑

i=1

n∑

j=1

xi j −
n∑

j=1

x ji

=

n∑

i=1

n∑

j=1

xi j −
n∑

i=1

n∑

j=1

x ji

= 0.

Hence, a necessary condition for (3.4) to be feasible is that

n∑

i=1

fi = 0.

Both the transportation and transshipment problems from Section 3.2 are
examples of minimum cost network flow LPs. For the first type of problem,
there exist two classes of nodes, those at which the net outflow is positive, the
supply points, and those at which it is negative, the demand points. The net
outflow numbers represent the respective supply and demand amounts. The
available supply from the first type of point may be used as the flow capacity
to any demand point. The flow capacity along any arc starting and ending at
two supply points as well as along any arc starting at a demand point is zero.
For the transhipment LP, there exists a third class of nodes, namely those at
which the net outflow is zero.

We already know from Theorem 3.2.1 that the solution of the balanced
transportation problem having integer supply and demand amounts is it-
self integer-valued. Under appropriate conditions, this result generalizes to
the minimum network flow problem problem and is spelled out by Theorem
3.3.1, sometimes known as the Integrality Theorem.

Theorem 3.3.1. Assume in LP (3.4) that the flow constraints, Mi j, where
1 ≤ i, j ≤ n, and net outflows fi, where 1 ≤ i ≤ n are integer-valued. Then the
decision variable values in any basic feasible solution are also integer-valued.

3.3. Basic Network Models 99

3.3.2 Formulating and Solving the Minimum Cost Network Flow
Problem with Maple

Maple list, array, and matrix structures provide a straightforward means for
solving minimum network flow problems. For example, consider the network
of 5 nodes depicted in Figure 3.2. Nodes are labeled I-V, together with their
corresponding outflows. Along each arc is an ordered pair, whose entries
represent cost and flow capacity, respectively, along the arc.

-1

-2-4

I

II

IIIIV

V 4

3 (3,4)
(6,4)

(3,3)

(2,3)

(3,3)

(4,4)

FIGURE 3.2: Five-node network with corresponding outflow numbers, costs,
and flow capacities.

The following worksheet constructs the solution to the corresponding mini-
mum network flow problem. Output has been suppressed with the exception
of the final solution.

> with(LinearAlgebra):with(Optimization):

> f:=[3,-1,-2,-4,4]:
Outflow numbers corresponding to nodes.

> M:=Matrix(5,5,[0,4,0,0,4,0,0,3,3,0,0,0,0,3,0,0,0,0,0,0,0,4,0,0,0]):
Matrix of flow capacities.

> C:=Matrix(5,5,[0,3,0,0,6,0,0,3,3,0,0,0,0,2,0,0,0,0,0,0,0,4,0,0,0]):
Matrix of unit flow costs.

> x:=array(1..5,1..5):
Array of decision variables.

> z:=add(add(C[i,j]*x[i,j],j=1..5),i=1..5):
Network cost function.

> FlowConservation:=
seq(add(x[i,j],j=1..5)-add(x[j,i],j=1..5)=f[i],i=1..5):

Conservation of flow constraints.

100 Chapter 3. Standard Applications of Linear Programming

> FlowCapacities:=seq(seq(x[i,j]<=M[i,j],j=1..5),i=1..5):
Flow capacity constraints.

> LPSolve(z,[FlowConservation,FlowCapacities],assume=nonnegative):
Solve minimum cost flow LP, suppressing output.

> assign(%[2]):
Assign the decision variables to their solution values.

> print(x,z);
Print the solution array along with objective value.

x :=

0 3 0 0 0
0 0 3 3 0
0 0 0 1 0
0 0 0 0 0
0 4 0 0 0

, 45

3.3.3 The Shortest Path Problem

One of the simplest examples of a minimum cost network flow problem
arises when we seek the shortest path of travel starting at one location and
ending at another, given various routes from which to choose. The starting
point may be viewed as a source with net outflow 1, the destination as a
sink with outflow -1, and intermediate locations as transshipment points. If
distances between locations are viewed as transportation costs, the shortest
path problem reduces to that of a transshipment problem whose objective is
to minimize the cost of transporting one unit from the source to the sink.

For example, suppose an individual wishes to travel from his home in Grand
Rapids, Michigan to Graceland, Tennessee and is considering routes that pass
through the cities of Chicago, Indianapolis, Lansing, and St. Louis. Approx-
imate distances between the various pairs of cities are shown in Figure 3.3.
Assume that the lack of a single segment connecting two cities, e.g., Grand
Rapids and St. Louis, indicates that a direct route between those two cities
is not under consideration. That arrows in the diagram are bidirectional in-
dicates that travel is possible in either direction and that the corresponding
transportation costs, i.e., distances, are equal.

Our goal is to determine the path of shortest length that starts at Grand Rapids
and ends at Graceland, traveling only upon segments shown in Figure 3.3.

We begin by numbering the cities as shown in the figure and by letting xi j,
where 1 ≤ i, j ≤ 6, denote the fraction of the one unit that is transported from
city i to city j. Because city 1 is a source, city 6 is a sink, and all other cities
are transshipment points, we have f1 = 1, f6 = −1, and f2 = f3 = f4 = f5 = 0.
For pairs of cities connected by arcs, we set the flow capacity equal to 1. For
pairs not connected, we set the capacity to 0. Thus, since all net outflows

3.3. Basic Network Models 101

1. Grand Rapids, MI

3. Indianapolis, IN

 4. Lansing, MI

5. St. Louis, MS

6. Graceland, TN

2. Chicago, IL

140

720

220

70

460

300

180

250

250

FIGURE 3.3: Driving distances between various cities.

and all flow capacities are integer-valued, we conclude by Theorem 3.3.1
that the LP’s solution will yield integer-valued decision variable values. In
particular, if travel is not possible between cities i and j, we know a priori
that xi j = x ji = 0.

Costs associated with the objective function are determined using inter-city
driving distances, which we record by the matrix

C =

0 140 220 70 0 0
140 0 180 0 300 0
220 180 0 250 0 460
70 0 250 0 0 720
0 300 0 0 0 250
0 0 460 720 250 0

. (3.5)

Note that our flow capacity constraints already guarantee that the decision
variable corresponding to pairs of cities between which travel is not possible
must equal 0 in the solution. Thus, in our cost matrix, we may set to zero
(or any value, for that matter) the cost corresponding to any such pair of
cities. Observe also that the matrix C is symmetric, i.e., C = Ct, which reflects
the facts flow is bidirectional and that transportation costs between any two
nodes are the same, regardless of direction.

102 Chapter 3. Standard Applications of Linear Programming

Using C we then have the objective function

z = Total Distance Travelled =

6∑

i=1

6∑

j=1

Ci jxi j. (3.6)

Using the objective z, along with the flow capacities, and conservation of
flow constraints we have the information required to solve the minimum cost
flow problem. Its solution, as computed using Maple, is given by z = 680,
x13 = x36 = 1 and all other decision variables equal to zero. Thus, the shortest
path corresponds to the 680-mile route from Grand Rapids to Indianapolis to
Graceland.

Clearly, many variants of this problem exist. For example, the objective can
become one of minimizing the time, not the distance, required to travel from
the source to the sink.

_ _

Waypoint 3.3.1. Suppose that driving speeds between all pairs of
cities in Figure 3.3 is 70 miles per hour, with the exception of the
segment from Grand Rapids to Indianapolis, where speed is limited to
55 miles per hour. Assuming that one travels from one city to another
at a constant speed equal to the legal maximum, determine the route
that minimizes the time required to travel from Grand Rapids to
Graceland.

_ _

3.3.4 Maximum Flow Problems

The maximum flow problem is another example of a minimum cost network
flow problem, which, like the shortest path problem, involves a single source,
a single sink, and transshipment points.

For example, a municipality wishes to design a plan that maximizes the
flow of wastewater to a local sewage treatment plant. Figure 3.4 depicts a
community (labeled I), which sends its wastewater to three different pumping
stations (labeled II, III, and IV), which, in turn, transport the wastewater to
a sewage treatment facility (labeled V). Directions of possible flow along
pipelines are depicted by arrows, with the flow capacity of each pipe, as
measured in units of volume per unit time, denoted by the number adjacent
to the corresponding arrow. The city seeks to determine what flow through
the given pipes will maximize total possible flow from the city and to the
treatment plant, subject to the prescribed flow capacities.

We begin by numbering the city, pumping station, and treatment plant as

3.3. Basic Network Models 103

I. City

II.

III.

IV.

V. Plant

2

2

3

3

1

4

FIGURE 3.4: Wastewater flow diagram.

shown in Figure 3.4, and we let xi j, where 1 ≤ i, j ≤ 5, denote the flow rate
(in volume of flow per unit time) from location i to location j. Because we do
not know the net outflow form the city (it is, after all, the quantity we seek to
maximize), we must alter the problem slightly without changing the nature
of the solution. The key is to add an “artificial” arc connecting the treatment
plant to the city and to view both the plant and city as transshipment points.
Hence, f1 = f2 = f3 = f4 = f5 = 0. We also set the flow capacity along this
new arc to a large number, m, such as any number greater than the sum of
the already-existing capacities. We use m = 100.

Our goal is to maximize the flow leaving the city or, by conservation, the flow
along the “artificial” arc from the plant to the city. In other words, we seek
to maximize x51, equivalently minimize z = −x51. Hence, we set C51 = −1

and all other unit flow costs to zero, which gives us C =

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
−1 0 0 0 0

.

Along with M =

0 2 3 0 0
0 0 3 4 0
0 0 0 0 2
0 0 0 0 1

100 0 0 0 0

, we have all the data needed to solve the

problem of maximizing the flow through the city.

104 Chapter 3. Standard Applications of Linear Programming

_ _

Waypoint 3.3.2. Use Maple to verify that the flow from the city is
maximized when x12 = x24 = x45 = 1, x13 = x35 = 2, and x51 = 3.

_ _

Exercises Section 3.3

1. A network consists of 5 nodes, labeled 1-5, whose net outflows are
2,−3, 4,−2 and −1, respectively. Assume that the flow capacity along
each arc connecting any two pair of nodes is 2, with the exception of
any arc starting at the third node, which has flow capacity 1. If the
matrix

C =

1 2 1 4 3
1 3 3 2 1
3 4 1 2 1
4 4 3 3 3
1 1 2 1 3

records the cost per unit flow between any two nodes, determine the
solution to the corresponding minimum cost network flow problem.

2. The figure below illustrates a network consisting of 5 nodes and 6 paths,
together with the flow capacity along each arc. Find the maximum flow
from node 1 to node 5.

4

1

2

3

5

1

2

3

3
4

1

3. Consult a road atlas and determine the route of shortest driving distance
from Billings to Great Falls, Montana that uses only interstate and U.S.
highways. Then determine the route of shortest time duration, assum-
ing interstate highway speeds of 70 miles per hour and U.S. highway
speeds of 55 miles per hour.

3.3. Exercises Section 3.3 105

4. A hospital discharges to its outpatient system a portion of its patients,
each of whom receives one of three types of follow-up services: speech
therapy, physical therapy, and occupational therapy. Each therapy type
is performed at two different outpatient clinics.2 Table 3.8 indicates the
maximum number of new outpatient admissions of a specified therapy
type that each clinic can accept during any given day.

TABLE 3.8: Maximum number of outpatient admissions of each therapy type
at each clinic

Therapy Type/Clinic Clinic 1 Clinic 2
Speech 3 2
Physical 6 4
Occupational 2 3

Assume that the hospital can discharge at most 10 patients daily to
each clinic and that both speech and occupational therapy services can
perform up to 5 daily discharges from the outpatient system but that
physical therapy can only perform up to 4. Assume also that at most
3 patients can have services transferred from one clinic to the other on
any given day.

Suppose the hospital represents the source and the state of complete
discharge denotes the sink. Using the clinics and therapy types as nodes
in the network, determine the maximum number of patients the hospital
can discharge daily for outpatient services.

2Based upon Duncan and Noble, [12], (1979).

Chapter 4

Duality and Sensitivity Analysis

4.1 Duality

Duality occurs when two interrelated parts comprise the whole of something.
In the context of linear programming, duality refers to the notion that every
LP has a corresponding dual LP, whose solution provides insight into the
original LP.

4.1.1 The Dual of an LP

Throughout this section we shall refer to the standard maximization problem
having n decision variables and m constraints, written in matrix inequality
form as

maximize z = c · x (4.1)

subject to

Ax ≤ b

x ≥ 0,

where x belongs to Rn, c is a row vector in Rn, b belongs to Rm, and A is an
m-by-n matrix. The prototype example is of course the FuelPro LP, in which

case x =

[
x1

x2

]
, c =

[
4 3

]
, b =

8
28
32

, and A =

1 0
2 2
3 2

. The expanded form of this

LP is given by:

maximize z = 4x1 + 3x2 (4.2)

subject to

x1 ≤ 8

2x1 + 2x2 ≤ 28

3x1 + 2x2 ≤ 32

x1, x2 ≥ 0.

Let y denote a row vector in Rm. The dual LP of (4.1) is written in matrix

107

108 Chapter 4. Duality and Sensitivity Analysis

inequality form as

minimize w = y · b (4.3)

subject to

yA ≥ c

y ≥ 0.

There are several features to observe about the dual LP. First, its goal is
minimization. Second, its objective function coefficients are determined from
the right-hand sides of the original LP’s constraints. (We call the original LP
the primal LP.) Finally, the constraints of the dual LP are all greater-than-or-
equal-to, and the right-hand sides now are the objective coefficients of the
primal LP.

In the case of the FuelPro model, y is a row vector in R3, which we denote as
y = [y1, y2, y3], and the dual LP’s objective function is given by

w =
[
y1 y2 y3

]

8
28
32

 = 8y1 + 28y2 + 32y3.

Substituting the other vector/matrix quantities from the FuelPro LP into (4.3),
we obtained the expanded form of the dual of (4.2),

minimize w = 8y1 + 28y2 + 32y3 (4.4)

subject to

y1 + 2y2 + 3y3 ≥ 4

2y2 + 2y3 ≥ 3

y1, y2, y3 ≥ 0.

Viewing the dual LP in the form (4.4) gives us better insight into the correspon-
dence between primal LP and its dual. Whereas the primal LP involved three
constraints in two decision variables, the dual LP involves two constraints
in three decision variables. Moreover, there is a natural correspondence be-
tween each decision variable in the dual and a constraint in the primal. For
example, by comparing variable coefficients, we see that the decision variable
y3 in (4.4) corresponds to the third constraint in the primal.

Before proceeding, we pause to emphasize why duality is important.

1. First, we will establish that the solution to an LP can be obtained by
solving its dual. Thus, one has the freedom to solve either of the LPs,
depending upon which is computationally easier. In fact, later in this
chapter, we develop a variant of the simplex algorithm, known as the
dual simplex algorithm, which capitalizes upon this result.

4.1. Duality 109

2. In the next section, we investigate sensitivity analysis. As the term sug-
gests, it determines the extent to which optimal solutions remain stable
under parameter changes in the original LP, e.g., under changes in ob-
jective coefficients, constraint bounds, etc. Duality plays a central role
in this analysis.

3. Finally, there is an inherent aesthetic beauty to duality in that it provides
a fresh perspective from which to view the simplex algorithm, reinforces
important linear algebra concepts, and demonstrates that there is much
more to linear programming than mere matrix computations.

_ _

Waypoint 4.1.1. Consider the LP

maximize z = 3x1 + 5x2 + 6x3

subject to

2x1 + x2 + x3 ≤ 1

x1 + 2x2 + x3 ≤ 2

x1 + x2 + 2x3 ≤ 4

x1 + x2 + x3 ≤ 3

x1, x2, x2 ≥ 0.

Express this LP in the matrix inequality form (4.1), clearly specifying
all matrices and vectors and checking that all resulting matrix/vector
products are well defined. Then express the dual LP in both matrix
inequality and expanded forms. Finally, solve each LP using whatever
means you find most convenient. Try to look for relationships between
the solutions you obtain.

_ _

4.1.2 Weak and Strong Duality

The path to establishing relationships between an LP and its corresponding
dual begins with the following result, which we refer to as the Weak Duality
Theorem.

Theorem 4.1.1. Suppose x0 is primal-feasible, meaning it satisfies the con-
straints and sign conditions in (4.1), and y0 is dual-feasible, meaning it satis-
fies the constraints and sign restrictions in (4.3). Then

cx0 ≤ y0b.

110 Chapter 4. Duality and Sensitivity Analysis

Proof. The proof is straightforward and as follows:

cx0 ≤
(
y0A

)
x0 (y0 is dual-feasible)

= y0 (Ax0) (associativity)

≤ y0b. (x0 is primal-feasible).

�

The consequences of the Weak Duality Theorem are significant. For example,
suppose x0 is primal-feasible, y0 is dual-feasible, and cx0 = y0b. Then x0 and
y0 are optimal solutions to their respective LPs since weak duality implies
the primal objective value is no larger than cx0 and the dual objective value
is no smaller than y0b.

Alternatively, suppose, that the primal LP is unbounded, meaning cx0 can be
made arbitrarily large. If the dual LP is feasible then there exists y0 such that
y0b is a finite, real number. But the unboundedness of the primal guarantees
the existence some x0 satisfying cx0 > y0b. This inequality contradicts the
Weak Duality Theorem, implying that if the primal LP is unbounded, the
dual LP must be infeasible.

Of particular interest is the case when both the primal and dual possess
optimal solutions. Key to understanding the consequence of this situation is
the result from Theorem 2.4.1 of Section 2.4.3. Recall that after each iteration
of the simplex algorithm, the tableau matrix corresponding to (4.1) can be
written in the form

[
1 y

0m×1 M

]
·
[

1 −c 01×m 0
0m×1 A Im b

]
=

[
1 −c + yA y yb

0m×1 MA M Mb

]
, (4.5)

where y is a row vector in Rm and M is an m-by-m matrix.

Reintroducing the top row of variable labels to (4.5), we obtain the tableau
shown in Table 4.1.

TABLE 4.1: General form of simplex tableau for LP (4.1)

z x s RHS
1 −c + yA y yb
0 MA M Mb

The result given in Table 4.1 holds for any iteration of the simplex algorithm.
However, the algorithm for this maximization problem terminates when all
coefficients in the top row of the tableau are nonnegative, which forces

−c + yA ≥ 0 i.e. yA ≥ c, and y ≥ 0.

4.1. Duality 111

But by (4.3), this is precisely what it means to say that y is dual-feasible. In
others words, at the final iteration of the simplex algorithm applied to an
LP, we simultaneously obtain the optimal solution to the LP, x0, as well as a

dual-feasible point, y0
def
= y. Moreover, when this occurs, the optimal primal

objective value, z0 = c · x0, equals the right-most entry in the top row of Table
4.1, which is y0b. By Theorem 4.1.1, y0 is an optimal solution of the dual LP
with corresponding objective value

w0
def
= y0 · b = z0 = c · x0.

Thus we have proven the following result, which we refer to as the Strong
Duality Theorem.

Theorem 4.1.2. If LP (4.1) has an optimal solution x0, then its dual LP (4.3)
also has an optimal solution, y0, and their corresponding objective function
values, z0 and w0, are equal. In other words, there is equality in Weak Duality
at the optimal solution, and

z0 = cx0 = y0b = w0.

Moreover, the optimal dual decision variable values, y0, are given by the
coefficients of the slack variables in the top row of the primal LP’s final
tableau.

By combining the result of Theorem 4.1.2, the fact that the dual of an LP’s
dual is the original LP, and arguments such as those following the proof of
the Weak Duality Theorem (Theorem 4.1.1), we arrive at the following major
result, which summarizes the three possible outcomes for an LP and its dual:

Theorem 4.1.3. For an LP and its dual LP, one of the three possible outcomes
must occur:

1. If the primal LP has an optimal solution, then so does the dual LP and
the conclusions of both the Weak and Strong Duality Theorems hold.

2. If the primal LP is unbounded, then the dual LP is infeasible.

3. If the primal LP is infeasible, then the dual LP is either infeasible or
unbounded.

Let us recap the two means of obtaining the dual LP solution. One way is
to solve it directly. For the FuelPro LP, this means using the Big M method
(Section 2.3) and introducing excess and artificial variables as follows:

minimize w = 8y1 + 28y2 + 32y3+100a1 + 100a2 (4.6)

112 Chapter 4. Duality and Sensitivity Analysis

subject to

y1 + 2y2 + 3y3 − e1 + a1 = 4

2y2 + 2y3 − e2 + a2 = 3

y1, y2, y3, e1, e2, a1, a2 ≥ 0.

Here we use M = 100. Each iteration of the simplex algorithm yields a dual-
feasible solution with corresponding objective value, yb, which decreases
from one iteration to the next. The tableau obtained at the final iteration is
shown in Table 4.2.

TABLE 4.2: Final tableau for FuelPro dual LP after being solved with the Big
M Method

w y1 y2 y3 e1 e2 a1 a2 RHS
1 -4 0 0 -4 -10 -96 -90 46
0 1 0 1 -1 1 1 -1 1
0 -1 1 0 0 − 3

2 -1 3
2

1
2

At the final iteration, we achieve an optimal solution of y1 = 0, y2 =
1

2
, and

y3 = 1, which agrees with the slack variable coefficients in the top row of
the primal solution tableau. Furthermore, the optimal dual objective value,
w0 = 46, equals the optimal objective value from the primal.

The second means of arriving at the dual solution is to do so indirectly from
the primal LP. At each iteration of the algorithm applied to the primal, we
obtain, from the top row of the primal tableau, values for y, yA, and yb, which
are listed in Table 4.3.

TABLE 4.3: Top rows of tableau for iterations of primal FuelPro LP (The z
column has been omitted)

Iteration
[−c + yA

]
1

[−c + yA
]
2 y1 y2 y3 yb

Zero -4 -3 0 0 0 0
First 0 -3 4 0 0 32

Second 0 0 − 1
2 0 3

2 44

Third 0 0 0 1
2 1 46

In this case, as the column headings show, we start with yb as small as
sign restrictions allow (zero!) and iterate until we obtain a value of y that
is dual-feasible. At each iteration, yb increases as y moves towards dual
feasibility. Again, at the optimal solution, our dual objective function and
decision variable values agree with those predicted by Theorem 4.1.2.

4.1. Duality 113

A close inspection of Table 4.2 reveals other interesting patterns. First, the
coefficients of the excess variables in the top row of the tableau are the additive
inverses of the decision variable values in the optimal solution of the primal.
We will not prove this general result, but it illustrates how we can solve the
original LP by solving its corresponding dual if doing so appears to require
fewer computations, for example if the original LP has far more constraints
than variables.

Second, recall that a constraint of an LP is binding if the slack variable cor-
responding to that constraint has a solution value of zero. In the case of the
FuelPro LP, the decision variable, y1, is zero in the dual LP’s solution, and yet
only the corresponding first constraint in the primal LP is non-binding. In the
solution of the primal, neither decision variable is zero, yet both constraints
in the dual LP are binding. These results suggest a possible relationship be-
tween solution values of one LP and the corresponding constraints in the
other, which is true in general and is summarized by the following theorem,
which we refer to as the Complementary Slackness Property.

Theorem 4.1.4. Assume x0 is a feasible solution to LP (4.1) and y0 is a feasible
solution to (4.3). Then a necessary and sufficient condition for both to be
simultaneously optimal solutions of their respective LPs is that

[
y0A − c

]
i [x0]i = 0 i = 1, 2, . . . , n,

and
[y0] j [b − Ax0] j = 0 j = 1, 2, . . . ,m.

In other words, we have obtained an optimal solution to an LP and its dual
if and only if both of the following two conditions hold:

• Each decision variable in the primal is zero or the corresponding con-
straint in the dual is binding.

• Each decision variable in the dual is zero or the corresponding constraint
in the primal is binding.

Proof. Feasibility and associativity dictate

cx0 ≤
(
y0A

)
x0 = y0 (Ax0) ≤ y0b. (4.7)

By Strong Duality, both solutions x0 and y0 are simultaneously optimal if and
only if cx0 = y0b. In light of inequality (4.7), it follows that x0 and y0 are
simultaneously optimal if and only if

0 =
(
y0A

)
x0 − cx0 and 0 = y0b − y0 (Ax0) ,

which is equivalent to

0 =
(
y0A − c

)
x0 and 0 = y0 (b − Ax0) . (4.8)

114 Chapter 4. Duality and Sensitivity Analysis

The constraint and sign conditions guarantee that all entries of the vectors

y0A − c, x0, y0, and b − Ax0

are nonnegative. Thus the product of any two corresponding entries in either
matrix product from (4.8) must be zero. Hence x0 and y0 are simultaneously
optimal if and only if

[
y0A − c

]
i [x0]i = 0 i = 1, 2, . . . , n,

and
[y0] j [b − Ax0] j = 0 j = 1, 2, . . . ,m.

�

Because y0 is represented by the slack variable coefficients in the top row of
the primal LP’s final tableau, complementary slackness is an ideal tool for
checking whether a feasible point of an LP is in fact an optimal solution (See
Exercise 8).

4.1.3 An Economic Interpretation of Duality

Perhaps the best means of interpreting the dual of the FuelPro Petroleum
CompanyLP begins with a dimensional analysis. The original problem dictates
that the units of x1 and x2 are gallons of premium fuel and gallons of regular
unleaded fuel, respectively. The corresponding components of c (scaled) are
$ per gallon of premium and dollars per gallon of regular unleaded. The
respective components of b are gallons of premium, gallons of stock A, and
gallons of stock B. The entries of A vary and are either dimensionless (row
1), gallons of stock A per gallon of fuel type (row 2), or gallons of stock B per
gallon of fuel type (row 3). It follows that the units of the components of y
are $ per gallon premium, $ per gallon of stock A, and $ per gallon of stock
B, respectively.

Here again is the dual of the FuelPro LP:

minimize w = 8y1 + 28y2 + 32y3 (4.9)

subject to

y1 + 2y2 + 3y3 ≥ 4

2y2 + 2y3 ≥ 3

y1, y2, y3 ≥ 0.

Suppose that FuelPro Petroleum Companyconsiders selling all its assets. These
assets arise from three sources corresponding to the three original constraints:

4.1. Duality 115

the availability of premium and the availability of stocks A and B. The inter-
ested buyer seeks to purchase all assets (at respective prices of y1, y2, and y3)
and to do so at minimum cost. This goal yields the minimization objective w
in (4.9).

For the dual constraints, the profit earned from each fuel grade can be viewed
as coming from one of the three preceding asset types. The extent to which
each type contributes to a particular fuel grade’s profit is determined by an
appropriate entry in A. From FuelPro Petroleum Company’s perspective, the
values of y1, y2, and y3 must guarantee that the amount earned from the sale
of the three assets is worth at least as much as the profit these assets currently
generate, be it profit stemming from premium or from regular unleaded. This
fact motivates an interpretation of each of the two constraints in the dual LP.

4.1.4 A Final Note on the Dual of an Arbitrary LP

Throughout this section, for purposes of simplicity, we have focused on a
standard maximization LP such as (4.1). However, the dual of any LP is well
defined, and all results of this section remain valid. Key to formulating the
general dual is recognizing that each constraint in the primal corresponds to a
dual variable and that each primal objective coefficient corresponds to a dual
constraint. Table 4.4 summarizes the general formulation for an LP having
m constraints in n decision variables. In this table, “u.r.s.” denotes a decision
variable that is unrestricted in sign.

TABLE 4.4: Guide to the general dual formulation

LP Dual LP
max cx min yb

n∑

i=1

ai jxi ≤ b j for some 1 ≤ j ≤ m y j ≥ 0 for this same j

n∑

i=1

ai jxi = b j for some 1 ≤ j ≤ m y j u.r.s. for this same j

xi ≥ 0 for some 1 ≤ i ≤ n

m∑

j=1

y jai j ≥ ci for this same i

xi u.r.s. for some 1 ≤ i ≤ n

m∑

j=1

y jai j = ci for this same i

116 Chapter 4. Duality and Sensitivity Analysis

4.1.5 The Zero-Sum Matrix Game

Duality provides an intriguing perspective from which to view the math-
ematics underlying a topic in game theory known as matrix games. In this
section, we explore the connections between these two areas.

Ed and Steve love to gamble. When they can’t find enough friends to play
Texas Hold ’Em, they instead play a matrix game using the following 3-by-3
payoff matrix:

A =

1 −1 2
2 4 −1
−2 0 2

 . (4.10)

In this game, at each play, Ed picks a column and, simultaneously, Steve
picks a row. The dollar amount ai, j in the resulting entry then goes to Ed if it
is positive and to Steve if it is negative. For example, if Ed chooses column
three and Steve simultaneously chooses row one, then Steve pays Ed $2. Since
whatever dollar amount Ed wins on a play is lost by Steve and vice versa,
money merely changes hands. Such a contest is known as a zero-sum matrix
game. The columns of the payoffmatrix form Ed’s possible pure strategies and
the rows of the matrix form Steve’s.

An important question in game theory asks whether a matrix game, such as
that played by Ed and Steve, possesses a pure strategy Nash equilibrium. This
entity consists of a pure strategy choice for each player, which we refer to
as that player’s equilibrium pure strategy, along with the players’ correspond-
ing payoffs, all of which combine to exhibit a very special property. Namely,
knowing the equilibrium pure strategy of the other player, no player can ben-
efit by deviating from his equilibrium pure strategy while the other continues
to follow his own.

Pure strategy Nash equilibria candidates consist of entries of the payoff ma-
trix. In the case of Ed and Steve’s game, there are nine such possibilities. For
example, consider the entry in column three, row one of (4.10). This entry
does not constitute a pure strategy equilibrium, for if Steve recognizes that
Ed always chooses column three, then Steve can increase his earnings by
always choosing row two instead of row one. Similar reasoning, applied to
the remaining eight entries of the payoff matrix, demonstrates that no pure
strategy Nash equilibrium exists for this game.

In contrast to a pure strategy, whereby Ed and Steve always choose the same
column or row, respectively, a mixed strategy arises by assigning probabilities
to the various choices. For example, Ed may choose column one, column

two, and column three with respective probabilities
1

2
,

1

3
, and

1

6
. Clearly

there are infinitely many possible mixed strategies for each player. A mixed
strategy Nash equilibrium consists of a mixed strategy for each player, called the

4.1. Duality 117

equilibrium mixed strategy, together with corresponding average earnings, all
of which combine to exhibit an important property analogous to that for the
pure strategy situation. That is, knowing the equilibrium mixed strategy of the
other player, no single player can increase his average earnings by deviating
from his equilibrium mixed strategy while the other continues to follow his
own. Every zero-sum matrix game has a mixed strategy Nash equilibrium
[46]. We now seek to determine this equilibrium for Ed and Steve’s matrix
game.

We first observe that matrix-vector products provide a convenient means for
expressing each game move. In the case when Ed chooses column three and

Steve chooses row one, we can associate to Ed the column vector

0
0
1

 and to

Steve the row vector
[
1 0 0

]
. The payoff is then given by

[
1 0 0

]
· A ·

0
0
1

 =

[
1 0 0

]
·

1 −1 2
2 4 −1
−2 0 2

 ·

0
0
1

= 2.

118 Chapter 4. Duality and Sensitivity Analysis

_ _

Waypoint 4.1.2. We now consider mixed strategies.
1. Suppose Ed chooses columns one, two, and three with respective
probabilities, x1, x2, and x3 and that Steve always chooses row one. Use
A to determine a linear function, f1, of x1, x2, and x3, that represent Ed’s
expected winnings as a function of these three probabilities. Repeat
this process and find functions, f2 and f3, that represent Ed’s winnings
as functions x1, x2, and x3, when Steve instead always chooses row
two or always chooses row three, respectively. Your results should
establish that

f1(x1, x2, x3)
f2(x1, x2, x3)
f3(x1, x2, x3)

 = Ax, (4.11)

where x =

x1

x2

x3

.

2. Now suppose Steve chooses rows one, two, and three with respec-
tive probabilities, y1, y2, and y3 and that Ed always chooses column
one. Use A to determine a linear function, g1, of y1, y2, and y3, that rep-
resent Steve’s expected winnings as a function of these three probabil-
ities. Repeat this process and find functions, g2 and g3, that represent
Steve’s winnings as functions y1, y2, and y3, when Ed instead always
chooses column two or always chooses column three, respectively.
Your results should establish that

[
g1(y1, y2, y3) g2(y1, y2, y3) g3(y1, y2, y3)

]
= yA, (4.12)

where y =
[
y1 y2 y3

]
.

_ _

If z denotes the minimum of the three columns of Ax, then Ax ≥ ze, where

e =

1
1
1

. Since Ed’s payoffs are associated with positive entries of A, his goal

is to choose x1, x2, and x3 so as to maximize z. Thus he seeks to determine the
solution to the LP

maximize z subject to (4.13)

Ax ≥ ze

et · x = 1

x ≥ 0.

4.1. Duality 119

The constraint et · x = 1 reflects the requirement that x1 + x2 + x3 = 1. It can of
course be eliminated if x3 is replaced throughout the LP by 1 − x1 − x2.

Since z represents the minimum of the three columns of Ax and Ed seeks to
maximize this quantity, we say that Ed’s goal is to compute a maximin. The
solution vector, x0, of (4.13) constitutes Ed’s equilibrium mixed strategy.

By modifying this line of reasoning, we can establish that because Steve’s
payoffs are associated with negative entries of A, his goal is to choose an
equilibrium mixed strategy, y0, which forms the solution of the dual LP of
(4.13). In essence, Steve’s goal is to compute a minimax.

_ _

Waypoint 4.1.3. Verify that the dual LP of (4.13) can be expressed as
follows:

minimize w subject to (4.14)

yA ≤ wet

y · e = 1

y ≥ 0,

where y =
[
y1 y2 y3

]
. Then solve both (4.13) and (4.14). Your results

should indicate that

x0 =

3/28
9/28
4/7

 , y0 =

[
1/2 5/14 1/7

]
, and z0 = w0 =

13

14
.

_ _

These results indicate that Ed’s mixed strategy equilibrium is given

x0 =

3/28
9/28
4/7

, meaning he should choose column one with probability 3

28 ,

column two with probability 9
28 , and column three with probability 4

7 . Sim-

ilarly, Steve’s equilibrium mixed strategy of y0 =
[
1/2 5/14 1/7

]
dictates

he should choose rows one through three with respective probabilities, 1
2 , 5

14 ,

and 1
7 .

The corresponding objective values must be equal by Theorem 4.1.2. The
common value of 13

14 we refer to as the game value. If both players follow their
equilibrium mixed strategies, then, on the average, Ed will win this amount
because we associate positive payoffs to him. Likewise, Steve, to whom we
associate negative payoffs, will lose this amount. In this situation, a positive

120 Chapter 4. Duality and Sensitivity Analysis

game value indicates the game is biased in Ed’s favor. Of course, by modifying
entries of the payoff matrix A, we can create a situation in which the game
value is negative, signifying a game biased in Steve’s favor. A fair game is
one for which the game value is zero.

We now use duality to formally verify that the equilibrium mixed strategies,

x0 =

3/28
9/28
4/7

, y0 =

[
1/2 5/14 1/7

]
and corresponding payoff z0 = w0 =

13

14
,

constitute a mixed strategy Nash equilibrium for this matrix game.

Let us suppose that Ed deviates from his equilibrium strategy, choosing a
mixed strategy, x , x0, with corresponding earnings, z, and that Steve contin-
ues to follow his equilibrium mixed strategy, y0. Then

z = zy0e (4.15)

= y0(ze)

≤ y0(Ax) (since x is primal-feasible)

= (y0A)x

≤ (w0et)x (since y0 is dual-feasible)

= w0(etx)

= z0 (since w0 = z0)

Thus, Ed’s earnings are no more than z0. Similar reasoning demonstrates that
if Steve deviates from his equilibrium strategy, choosing a mixed strategy,
y , y0, with corresponding earnings, w, and if Ed continues to follow his
equilibrium mixed strategy, x0, then w ≥ w0. In other words, Steve does not
decrease his losses.

In Section 6.4.5 we will re-examine the zero-sum matrix game from the per-
spective of nonlinear programming, and in Section 8.4.4 we investigate the
consequences of the players having two different payoffmatrices.

Exercises Section 4.1

1. In light of the discussion in this section, explain why it is appropriate
to say that the goal of the simplex algorithm is to solve a feasible LP by
means of determining a feasible solution to its dual.

4.1. Exercises Section 4.1 121

2. Consider the LP

maximize z = 3x1 + 4x2

subject to

x1 ≤ 4

x1 + 3x2 ≤ 15

−x1 + 2x2 ≥ 5

x1 − x2 ≥ 9

x1 + x2 = 6

x1, x2 ≥ 0.

By rewriting the fifth constraint as a combination of two inequalities,
express this LP in the matrix inequality form (4.1). Then construct the
corresponding dual LP and demonstrate explicitly, without appealing
to Table 4.4, how it possesses a variable that is unrestricted in sign.

3. Prove that the dual of the dual of LP (4.1) is the original LP. (Hint:
Transpose properties may prove useful.)

4. Simplex algorithm iterations applied to an LP result in the tableau (4.5).

TABLE 4.5: Tableau for Exercise 4
z x1 x2 x3 x4 s1 s2 s3 RHS
1 0 0 0 8 -7 13 9 20
0 1 0 0 7 -3 6 15 12
0 0 0 1 10 0 4 2 14
0 0 1 0 4 -2 13 7 18

(a) How many constraints and decision variables are in the dual of
this LP?

(b) If the basic variables in the tableau are given by {x1, x2, x3}, what
information does Weak Duality provide about the objective value
in the solution of the dual LP?

5. Consider the LP

maximize z = 2x1 − x2

subject to

x1 − x2 ≤ 1

x1 − x2 ≥ 2

x1, x2 ≥ 0.

Show that both this LP and its corresponding dual are infeasible.

122 Chapter 4. Duality and Sensitivity Analysis

6. An LP has as its objective, maximization of the expression z = 2x1+ 3x2.
Simplex algorithm iterations applied to the LP result in Table (4.6).

TABLE 4.6: Tableau for Exercise 6
z x1 x2 s1 s2 s3 RHS
1 � � 1 0 0 �

0 − 2
3 1 1

3 0 0 6

0 3 0 − 1
2 1 0 3

0 14
3 0 − 1

3 0 1 10

(a) What are the constraints of the LP? (Hint: Use the matrix, M−1,
where M is as given in Theorem 2.4.1.)

(b) Fill in the entries marked � in the tableau.

(c) Determine the solutions of both the LP and its corresponding dual.

7. Solve the LP

maximize z = x1 + 5x2

subject to

−x1 + x2 ≤ 4

x2 ≤ 6

2x1 + 3x2 ≤ 33

2x1 + x2 ≤ 24

x1, x2 ≥ 0,

by first formulating and then solving its corresponding dual LP.

8. Consider an LP in the form of (4.1), in which

c =
[
5 1 1 4 1 2

]
, A =

1 2 4 3 4 6
7 −5 2 1 3 3
4 5 −2 1 6 −2
7 8 −3 5 2 4

, and b =

2
4
5
3

.

Suppose that

x0 =

8
17
0
5
17
2
17
0
0

.

Without performing the simplex algorithm, show that x0 is the optimal

4.1. Exercises Section 4.1 123

solution of the LP and determine the corresponding dual solution. (Hint:

Let y0 =
[
y1 y2 y3 y4

]
. Calculate both y0A−c and b−Ax0 and apply

Theorem 4.1.4 to construct a system of equations in the variables y1, y2,
y3, and y4.)

9. Determine the mixed strategy Nash equilibrium for a two-player, zero-
sum matrix game having payoffmatrix,

A =

[
2 −3
−1 4

]
.

10. Suppose c, b, and A are as given in (4.1). Define the matrix

M =

0m×m −A b

At 0m×n −ct

−bt c 0

 .

(a) Verify that M is a square matrix having m + n + 1 rows. Then
show that Mt = −M. (A square matrix, whose transpose equals its
additive inverse, is said to be skew-symmetric.)

(b) Suppose that both (4.1) and (4.3) are feasible and have optimal
solutions, x0 and y0. Show that the matrix inequality Mw ≥ 0 has a
solution, w = w0, for some w0 belonging to Rm+n+1 and satisfying
w0 ≥ 0 and [w0]m+n+1 > 0.

(c) Now assume that the matrix inequality Mw0 ≥ 0 holds for some
vector w0 belonging to Rm+n+1 and satisfying both w0 ≥ 0 and
[w0]m+n+1 > 0. Show that both (4.1) and (4.3) are feasible and have
optimal solutions, x0 and y0, that can be expressed in terms of w0.
(Hint: Let y be the row vector in Rm formed using the first m com-
ponents of w0, and let x be formed using the next n components,
[w0]m+1, [w0]m+2, . . . , [w0]m+n. If κ = [w0]m+n+1, which is positive,

define x0 =
1

κ
x and y0 =

1

κ
y.)

124 Chapter 4. Duality and Sensitivity Analysis

4.2 Sensitivity Analysis

Discussion of LPs thus far has focused primarily on solving them. Sensitivity
analysis takes place after an LP has been solved and seeks to determine the
extent to which changing model parameters affects the solution.

Recall the FuelPro Petroleum CompanyLP, given by

maximize z = 4x1 + 3x2 (4.16)

subject to

x1 ≤ 8

2x1 + 2x2 ≤ 28

3x1 + 2x2 ≤ 32

x1, x2 ≥ 0,

whose final tableau is provided in Table 4.7.

TABLE 4.7: FuelPro Petroleum Companyfinal tableau, (BV = {x1, x2, s1})
z x1 x2 s1 s2 s3 RHS

1 0 0 0 1
2 1 46

0 1 0 0 -1 1 4
0 0 0 1 1 -1 4
0 0 1 0 3

2 -1 10

The feasible region and the contour corresponding to the optimal solution
z = 46 are shown in Figure 4.1.

There are many ways in which the original LP can be modified. Examples
include the introduction of an additional variable, e.g., fuel type, a change
in an objective coefficient, an increase or decrease in a constraint bound, or
a modification in the amount of particular stock required to produce a given
gallon of fuel type.

There is an important initial observation to make before undertaking a study
of sensitivity analysis. Changes in the model may preserve the set of basic
variables in the solution yet change their actual values and, hence, possibly
change the objective function value as well. For example, Figure 4.1 illustrates
how the second and third constraints of (4.16) are binding at the optimal
solution, (x1, x2) = (4, 10). Sufficiently small changes in the right-hand sides
of either of these constraints will change the actual values of the current
optimal solution. But these alterations will not change the fact that in the

4.2. Sensitivity Analysis 125

0

2

4

6

8

10

12

14

16

2 4 6 8 10

x2

x1

z=4x1+3x2=46

(4,10)

FIGURE 4.1: Feasible region for FuelPro LP along with contour z = 46.

optimal solution, the basic variables are x1, s1, and x2. On the other hand,
the amount of available premium fuel can decrease by up to four units and
increase as large as one likes without affecting the actual values of the current
optimal solution (x1, x2) = (4, 10). This is a very different type of outcome, one
that we wish to account for in our analysis.

Ideally, we wish to conduct sensitivity analysis in as efficient a manner as
possible without actually resolving the LP. Crucial for doing so is the result
of Theorem 2.4.1 from Section 2.4. It states that if the matrix corresponding to
the initial tableau of a standard maximization LP is given by

[
1 −c 0 0
0 A Im b

]
(4.17)

and if the LP is feasible and bounded, then the tableau matrix after the final
iteration can be written as

[
1 y
0 M

]
·
[
1 −c 01×m 0
0 A I3 b

]
=

[
1 −c + yA y yb
0 MA M Mb

]
, (4.18)

for some suitable 1 by m vector y (the solution to the dual!) and some m-by-m
matrix M. In particular, all steps of the simplex algorithm used to achieve the
final tableau are completely determined by the entries of y and M.

4.2.1 Sensitivity to an Objective Coefficient

Suppose the objective coefficients in our initial LP are represented by the
vector c and we wish to change them by some vector quantity cδ. Then the
new tableau matrix becomes

126 Chapter 4. Duality and Sensitivity Analysis

[
1 −c − cδ 0 0
0 A Im b

]
. (4.19)

If we apply to (4.19) the same steps of the simplex algorithm as we did to
obtain (4.18), then we have

[
1 y
0 M

]
·
[
1 −c − cδ 0 0
0 A Im b

]

=

[
1 y
0 M

]
·
([

1 −c 0 0
0 A Im b

]
+

[
0 −cδ 0 0
0 0m×n 0m×m 0

])

=

[
1 −c + yA y yb
0 MA M Mb

]
+

[
0 −cδ 0 0
0 0m×n 0m×m 0

]

=

[
1 −c − cδ + yA y yb
0 MA M Mb

]
. (4.20)

By comparing (4.20) to (4.18), we see that the only changes that result from
applying the same steps of the algorithm to the new LP occur in the top row of
the tableau. In particular, the tableau corresponding to (4.20) reflects the need
for additional iterations only if at least one entry of −c − cδ + yA is negative.

The FuelPro example illustrates an application of this principle. Suppose that
the premium profit increases from 4 to 4+δ. By (4.20) and Table 4.7, we obtain
the tableau shown in Table 4.8.

TABLE 4.8: Fuelpro tableau under changed premium cost

z x1 x2 s1 s2 s3 RHS

1 −δ 0 0 1
2 1 46

0 1 0 0 -1 1 4
0 0 0 1 1 -1 4
0 0 1 0 3

2 -1 10

Recall that in the original LP, the basic variables at the final iteration were
given by x1, x2, and s1. To update the values of x1 and the objective, we must
pivot on the highlighted entry in Table 4.8. Doing so yields the tableau in
Table 4.9.

From this tableau, we see that an additional iteration of the simplex algorithm

is required only if one of 1
2 − δ or 1+ δ is strictly negative. Hence if −1 ≤ δ ≤ 1

2
(meaning the premium cost stays between 3 and 4.5), then the values of the

4.2. Sensitivity Analysis 127

TABLE 4.9: Fuelpro tableau under changed premium cost and after additional
pivot

z x1 x2 s1 s2 s3 RHS

1 0 0 0 1
2 − δ 1 + δ 46 + 4δ

0 1 0 0 -1 1 4
0 0 0 1 1 -1 4
0 0 1 0 3

2 -1 10

decision variables remain at (x1, x2) = (4, 10). However, the corresponding
objective function changes to z = 46 + 4δ.

A slightly different type of example is given by the three-variable LP

maximize z = 4x1 + 3x2 + 6x3 (4.21)

subject to

3x1 + x2 + 3x3 ≤ 30

2x1 + 2x2 + 3x3 ≤ 40

x1, x2, x3 ≥ 0.

The final tableau corresponding to this LP is given in Table 4.10.

TABLE 4.10: Final tableau for three-variable LP (4.21)

z x1 x2 x3 s1 s2 RHS
1 1 0 0 1 1 70
0 4

3 0 1 2
3 − 1

3
20
3

0 -1 1 0 -1 1 10

The basic variables at the final iteration are given by x2 = 10 and x3 =
20

3
.

Suppose in this case that the first objective coefficient increases from 4 to 4+δ.
Then applying to the new LP the same steps of the simplex algorithm that
led to Table 4.10, we obtain the tableau given in Table 4.11.

TABLE 4.11: Final tableau for modification of three-variable LP (4.21)

z x1 x2 x3 s1 s2 RHS
1 1 − δ 0 0 1 1 70
0 4

3 0 1 2
3 − 1

3
20
3

0 -1 1 0 -1 1 10

The current solution remains optimal provided δ < 1. In this case, no addi-

128 Chapter 4. Duality and Sensitivity Analysis

tional pivots are necessary in order to update the objective value. This stems
from the fact that we elected to increase the objective coefficient of a deci-
sion variable that was nonbasic in the optimal solution of the original LP. In
the case of the FuelPro LP, both decision variables were basic in the optimal
solution of the original LP.

Duality provides an additional means of handling this situation in which
the objective coefficient of a nonbasic variable is permitted to increase. From
Table 4.11, we see that the solution of the dual of (??) is given by y = [1, 1]. To
say that the current solution of (4.21) remains optimal is to say that y = [1, 1]
remains a feasible solution of the corresponding dual LP. In other words,

yA = y

[
3 1 3
2 2 3

]
= [5, 3, 6] ≥ [4 + δ, 3, 6], (4.22)

which implies δ < 1.

In summary, when performing a sensitivity analysis that focuses on the effect
of changing a coefficient in the objective function by some value δ, we start
with (4.20).

1. If the coefficient corresponds to a nonbasic variable in the solution
of the original LP, then the range of values δ for which the optimal
solution values remain unchanged is straightforward to determine. We
can subtract δ from the coefficient of the corresponding variable in the
top row of the original final tableau or use duality.

2. If the coefficient corresponds to a basic variable, we should pivot to
update the value of the objective function and to determine whether
another iteration of the simplex algorithm is necessary. For values of
δ not leading to an additional iteration, the decision variable values
in the optimal solution are the same as in the original LP. However,
the objective function value will now depend upon δ, in a manner
determined by the pivots.

4.2. Sensitivity Analysis 129

_ _

Waypoint 4.2.1. Solve the LP

maximize z = 4x1 + x2 + 5x3 (4.23)

subject to

2x1 + x2 + 3x3 ≤ 14

6x1 + 3x2 + 3x3 ≤ 22

2x1 + 3x2 ≤ 14

x1, x2, x3 ≥ 0.

Then perform a sensitivity analysis on each of the objective function
coefficients.

_ _

4.2.2 Sensitivity to Constraint Bounds

We now consider the effect of changing one or more constants that bound
the right-hand sides of an LP’s constraints. In terms of the matrix form (4.17),
we are concerned with the outcome of increasing or decreasing one or more
entries of b. Initially, our focus will be on perturbing a single entry of the
“constraint vector” b in (4.17), one that corresponds to a binding constraint.

Suppose we wish to increase the right-hand side of such a constraint by δ
units, where δ < 0 is interpreted as a decrease. Thus, the new constraint
vector may be denoted as

b + δu.

Here u is an m-by-1 column vector consisting of all zeros, except in the entry
corresponding to the constraint being changed, where a 1 is present instead.

The partitioned matrix form corresponding to the initial tableau is given by

[
1 −c 0 0
0 A Im b + δu.

]
(4.24)

Applying the same steps of the simplex algorithm that were used to solve the

130 Chapter 4. Duality and Sensitivity Analysis

original LP, we have

[
1 y
0 M

]
·
[
1 −c 0 0
0 A Im b + δu

]

=

[
1 y
0 M

]
·
([

1 −c 0 0
0 A Im b

]
+

[
0 0 0 0
0 0m×n 0m×m δu

])

=

[
1 −c + yA y yb
0 MA M Mb

]
+

[
0 0 0 yδu
0 0m×n 0m×m Mδu

]

=

[
1 −c + yA y y (b + δu)
0 MA M Mb +Mδu

]
. (4.25)

Note that the top row of this matrix, with the exception of the rightmost
entry, is identical to that obtained applying the simplex algorithm to the
original, unmodified LP. Thus, on first inspection, (4.25) corresponds to the
final tableau of the modified LP, and the set of basic variables is the same as in
the original LP. However, care must be taken to ensure that all basic variables
are nonnegative.

Let BV j, where 1 ≤ j ≤ m denote the basic variable corresponding to row j of
the final tableau. Then

BV j = [Mb +Mδu] j (4.26)

= [Mb] j + [Mδu] j

= [Mb] j + δ [Mu] j .

Each basic variable is currently positive in the original LP (when δ = 0),
unless the LP is degenerate, a case we will omit from discussion. By setting
positive each of the m expressions comprising the right-hand side of (4.26)
and solving for δ, we can determine the maximum and minimum allowable
range of δ values that result in positive basic variable values. In general this
range can be computed as

max
j=1,2,...,m

{
−

[Mb] j

[Mu] j

 [Mu] j > 0

}
< δ < min

j=1,2,...,m

{
−

[Mb] j

[Mu] j

 [Mu] j < 0

}
.

(4.27)

For example, suppose that in the FuelPro LP, an additional δ units of stock A
becomes available, in which case the right-hand side of the second constraint
in (4.16) increases from 28 to 28 + δ. The final tableau for the original LP is
given in Table 4.12.

In this situation, the basic variables corresponding to rows 1-3 are given by

4.2. Sensitivity Analysis 131

TABLE 4.12: Final tableau for original FuelPro LP

z x1 x2 s1 s2 s3 RHS

1 0 0 0 1
2 1 46

0 1 0 0 -1 1 4
0 0 0 1 1 -1 4
0 0 1 0 3

2 -1 10

x1, s1, and x2, respectively. Since M =

0 −1 1
1 1 −1
0 3

2 −1

 and u =

0
1
0

, an increase in

the right-hand side of the second constraint by δ yields

x1

s1

x2

 =Mb + δMu

=

4 − δ
4 + δ

10 + 3
2δ

 .

For basic variables x1, s1, and x2 to all remain positive, it must be the case that
−4 < δ < 4, or, in other words, the amount of available stock A stays between
24 and 32 gallons. For values of δ in this range, the corresponding objective
value is given by

z0 = y (b + δu) = 46 +
1

2
δ.

A close inspection of the preceding example, together with the general objec-
tive formula z = y (b + δu) in (4.25), illustrates a fundamental role played by
slack variables in sensitivity analysis. The increase in the objective value in
this particular example is

1

2
δ = y2δ = yδu.

Thus, slack variable coefficient values in the top row of the final tableau,
which are represented by y, can be used to determine a change in objective
value when a constraint bound is changed. This outcome is true even when
the previously discussed sensitivity analysis is not performed, provided the
set of basic variables remains intact under such a change. This gives slack
variables an extremely useful role in sensitivity analysis and leads us to the
following definition.

132 Chapter 4. Duality and Sensitivity Analysis

Definition 4.2.1. Suppose that the optimal solution to a standard maximiza-
tion LP is given by

z0 = yb =

m∑

j=1

y jb j.

Then the instantaneous rate of change,
∂z0

∂b j
= y j, the jth slack variable coeffi-

cient value in the top row of the LP’s final tableau, is called the shadow price
of the objective function z with respect to constraint j. For a small amount
of change in b j, small enough so that the set of basic variables in the solu-
tion of the new LP is identical to that in the solution of the original LP, this
shadow price can be used to compute the amount of increase or decrease in
the objective function.

For example, consider a maximization LP in two decision variables whose
final tableau is given by Table 4.13:

TABLE 4.13: Final tableau for sample maximization LP

z x1 x2 s1 s2 s3 RHS
1 0 0 3 0 2 20

Since y j , 0 for j = 1 and j = 3, the Complementary Slackness Property
(Theorem 4.1.4) dictates that the first and third constraints of the LP are
binding and that the shadow price of z with respect to the first constraint is

∂z0

∂b1
= y1 = 3.

Assume that increasing the right-hand side of the first constraint by .01 does
not change the set of basic variables in the new solution from that in the
solution of the original LP. Then the objective z increases by ∆z = 3(.01) = .03.

In summary, when performing a sensitivity analysis that focuses on the ef-
fect of changing the right-hand side of a binding constraint in a standard
maximization problem, we do the following:

1. To find the permissible range of increase or decrease in the right-hand
side of a constraint, we use formula 4.27 and/or the derivation that led
to it. This formula provides a means for determining the updated basic
variable and objective values.

2. To determine the magnitude of change solely in the objective function
value caused by the change in a constraint bound, we use the shadow

4.2. Sensitivity Analysis 133

price of the corresponding constraint. This is given by the correspond-
ing slack variable coefficient in the top row of the LP’s final tableau.
The shadow price must be used with caution, however, as its ability
to predict change in the objective value assumes that the set of basic
variables remains unchanged from that in the solution of the original
LP.

_ _

Waypoint 4.2.2. Consider the three-variable LP from Waypoint 4.2.1.

1. Suppose that the right-hand side of a particular constraint in-
creases by ∆b and that the set of basic variables in the solution
of the new LP is identical to that obtained in the original LP. Use
the definition of shadow price to determine how much the ob-
jective function will increase or decrease. Perform this analysis
for each constraint that is binding in the original LP.

2. By how much may the right-hand side of each binding con-
straint change and the set of basic variables in the solution to
the resulting LP equal that from the solution to the original LP?
For this range, what are the corresponding values of the basic
variables and the objective function?

_ _

In the preceding example, we modified the right-hand side of only one con-
straint. Yet the underlying principles can be easily modified to situations
involving more than one constraint bound. In this case, the constraint vector

b is adjusted by the vector δ =

δ1

δ2

δ3

, where δi, for i = 1, 2, 3, denotes the change

in the bound on constraint i. Now the final matrix corresponding to that in
(4.25) becomes

[
1 −c + yA y y (b + δ)
0 MA M Mb +Mδ

]
. (4.28)

For example, in the FuelPro LP, if the available premium increases by δ1 and

134 Chapter 4. Duality and Sensitivity Analysis

the available stock A increases by δ2, then δ =

δ1

δ2

0

 so that

x1

s1

x2

 =Mb +Mδ (4.29)

=

4 − δ2

4 + δ1 + δ2

10 + 3
2δ2

 . (4.30)

The set of ordered pairs, (δ1, δ2), for which x1, s1, and s2 are all nonnegative
is shown in Figure 4.2. For ordered pairs in this shaded region, the new
objective value is given by z = y (b + δ).

δ1

δ2

FIGURE 4.2: Ordered pairs (δ1, δ2) for which changes in the first two con-
straints of FuelPro LP leave the basic variables, {x1, s1, x2}, unchanged.

4.2.3 Sensitivity to Entries in the Coefficient Matrix A

Performing sensitivity analysis when entries of the coefficient matrix A are
changed can be complicated and tedious for reasons to be outlined momen-
tarily. One situation in which the analysis is rather straightforward occurs
when the matrix entry corresponds to a decision variable that is nonbasic in
the solution of the original LP. Suppose first that we add some matrix Aδ to
A, where the only nonzero entries of Aδ are those corresponding to such non-
basic variables. We leave it as an exercise to show that by applying the same
elementary row operations that resulted in the final tableau for the original
LP, we obtain the matrix

[
1 −c + y(A + Aδ) y yb
0 M(A + Aδ) M Mb

]
. (4.31)

In Section 4.2.2, we considered sensitivity of an LP to a coefficient in its

4.2. Sensitivity Analysis 135

objective function. We observed that when we applied the same simplex
algorithm steps that were used to solve the original LP, we obtained a tableau
matrix whose decision variable coefficients were represented by the vector
−c − cδ + yA. We also observed that duality could be used to determine
the permissible range of δ values for which the optimal solution remained
unchanged. Here, the use of duality is crucial.

The reason for this fact can be seen by contrasting the two vectors
−c− cδ+yA and −c+y(A+Aδ) which appear in the top rows of the respective
tableau matrices (4.20) and (4.31). Changing an objective coefficient of a single
decision variable in an LP only changes the coefficient of the same variable
in the top row when the simplex algorithm is performed. But when an entry
of A is modified, the presence of the vector-matrix product y(A + Aδ) in the
top row of (4.31) introduces the possibility that more than one coefficient in
the top row of the tableau is altered.

Duality provides a convenient means of addressing this problem. If the vector
y in (4.31), which is nonnegative, satisfies

y(A + Aδ) ≥ c,

then the solution to the LP whose final tableau matrix is given in (4.31) remains
optimal. Moreover, no additional pivots are needed to update any of the basic
variable values. This second fact follows from noting that entries of −c + yA
corresponding to basic variables are all zero (in the solution of the original
LP), as are those in yAδ. (Recall in our choice of Aδ that column entries of Aδ

corresponding to basic variables must equal zero.)

For example, in the solution to the three variable LP (4.21), the variable x1 was
nonbasic. Suppose the coefficient of x1 changes from 2 to 2 + δ in the second
constraint. Referring to the slack variable coefficients in Table ??, we note that
the current solution remains optimal if y = [1, 1] satisfies

y(A + Aδ) = y

[
3 1 3

2 + δ 2 3

]

= [5 + δ, 3, 6]

≥ [4, 3, 6],

that is, if −1 ≤ δ.

Now we consider the case when the nonzero entry of Aδ corresponds to a
basic variable in the LP’s solution. For example, suppose in the FuelPro LP
that an additional δ gallons of stock B is required to produce each gallon of
regular unleaded, in which case the coefficient of x2 in the third constraint
of the LP increases from 2 to 2 + δ. The tableau corresponding to (4.31) then
becomes that shown in Table 4.14.

136 Chapter 4. Duality and Sensitivity Analysis

TABLE 4.14: Fuelpro tableau after adjustment to coefficient of A corresponding
to a basic variable

z x1 x2 s1 s2 s3 RHS

1 0 δ 0 1
2 1 46

0 1 δ 0 -1 1 4
0 0 −δ 1 1 -1 4
0 0 1 − δ 0 3

2 -1 10

To begin the analysis in this situation, we first perform a pivot to update the
values of the basic variables and the objective. This pivot leads to the result
in Table 4.15.

TABLE 4.15: Updated Fuelpro final tableau after adjusting coefficient of x2 in
third constraint

z x1 x2 s1 s2 s3 RHS

1 0 0 0 4δ−1
2(δ−1)

1
1−δ

2(28δ−23)
δ−1

0 1 0 0 2+δ
2(δ−1)

1
1−δ

2(7δ−2)
δ−1

0 0 0 1 2+δ
2(1−δ)

1
δ−1

2(3δ+2)
1−δ

0 0 1 0 −3
2(δ−1)

1
δ−1

10
1−δ

We now make two important observations regarding this tableau. First, in
order for the basic variables x1, x2 and s1 to remain nonnegative, it must

be the case that
2(7δ− 2)

δ − 1
,

2(3δ+ 2)

1 − δ , and
10

1 − δ are all nonnegative. Hence

−2

3
≤ δ ≤ 2

7
. Second, another iteration of the simplex algorithm is unnecessary

provided the nonbasic variable coefficients in the top row of the tableau,
4δ − 1

2(δ − 1)
and

1

1 − δ , are nonnegative, i.e., provided δ ≤ 1
4 . Combining these

results we conclude that for −2

3
≤ δ ≤ 1

4
, the set of basic variables in the

solution of the modified is the same as that in the solution of the original. The
updated values of the basic variables are given in Table 4.15. Note in particular
that when δ = 0, the solution reduces precisely to that of the original FuelPro
LP.

In summary, when changing an entry in the coefficient matrix A of a standard
maximization LP, begin with (4.31).

1. If the entry of A that is changed corresponds to a nonbasic variable in the
final solution to the original LP, then duality provides a straightforward

4.2. Sensitivity Analysis 137

means of determining the range of values for which the current solution
remains optimal. No additional pivots are necessary.

2. If the entry of A being changed does correspond to a basic variable, then
a pivot is necessary to determine conditions under which all basic vari-
ables remain nonnegative and no further simplex algorithm iterations
are necessary. This process can be quite tedious.

4.2.4 Performing Sensitivity Analysis with Maple

Sensitivity analysis can be performed with Maple through the use of basic
matrix operations. The following worksheet, Sensitivity Analysis.mw, illus-
trates an example, using methods discussed in this section as applied to the
FuelPro model. In the interest of avoiding redundancy, calculations leading
to the original optimal tableau have been omitted. They may be found in
the sample worksheet, Simplex Algorithm.mw, given at the end of Section
2.1.4. This worksheet begins with the final tableau matrix from Simplex Algo-
rithm.mw, denoted by LP Matrix. Recall that c, A, b, n, and m are all defined
at the start of Simplex Algorithm.mw and that column 0 and row 0 denote
the leftmost column and top row, respectively, of the tableau matrix.

> Tableau(LPMatrix);
Display final tableau matrix for FuelPro LP.

z x1 x2 s1 s2 s3 RHS
1 0 0 0 1

2
1 46

0 1 0 0 −1 1 4
0 0 0 1 1 −1 4
0 0 1 0 3

2
−1 10

> y:=SubMatrix(LPMatrix,1..1, (m+1)..(m+1+n));
Extract from final tableau the slack variable coefficients as a vector.

y =
[
0 1

2
1
]

> M:=SubMatrix(LPMatrix,2..(m+1),(m+1)..(m+1+n));
Extract from final tableau the submatrix M corresponding to portion

of tableau below slack variable coefficients.

M =

0 −1 1
1 1 −1
0 3

2
−1

> ObjectiveCoefficient:=1;
Assess sensitivity to first objective coefficient.

ObjectiveCoe f f icient = 1

> e:=UnitVector[row](ObjectiveCoefficient,2);

e =
[
1 0

]

138 Chapter 4. Duality and Sensitivity Analysis

> LPMatrixNew:=<UnitVector(1,m+1)|<convert(-c-delta*e,Matrix)+y.A,M.A>|
<y,M>|<y.b,M.b>>;

Create new tableau matrix obtained by perturbing first objective

coefficient.

LPMatrixNew =

1 −δ 0 0 1
2 1 46

0 1 0 0 −1 1 46
0 0 0 1 1 −1 4
0 0 1 0 3

2
−1 10

> Iterate(LPMatrixNew,1,1);
Update tableau entries.

z x1 x2 s1 s2 s3 RHS
1 0 0 0 1

2 − δ 1 + δ 46 + 4δ
0 1 0 0 −1 1 4
0 0 0 1 1 −1 4
0 0 1 0 3

2
−1 10

> solve(LPMatrixNew[1,5]>=0 and LPMatrixNew[1,6]>=0, delta);
Determine delta values under which nonbasic variable coefficients

in top row remain nonnegative.

RealRange =
(
−1,

1

2

)

> ConstraintNumber:=2;
Assess sensitivity to second constraint bound.

ConstraintNumber = 2

> e:=UnitVector(ConstraintNumber,m);

e =

0
1
0

> LPMatrixNew:=<UnitVector(1,m+1)|<convert(-c,Matrix)+y.A,M.A>|
<y,M>|<y.(b+delta*e),M.(b+delta*e)>>;

Create new tableau matrix obtained by perturbing first objective

coefficient.

LPMatrixNew =

1 0 0 0 1
2

1 46 + 1
2
δ

0 1 0 0 −1 1 46
0 0 0 1 1 −1 4 − δ
0 0 1 0 3

2
−1 10 + 3

2
δ

> solve(LPMatrixNew[2,7]>=0 and LPMatrixNew[3,7]>=0 and LPMatrixNew[4,7]>=0,
delta);

Determine conditions under which basic variables remain nonnegative.

RealRange = (−4, 4)

4.2. Exercises Section 4.2 139

> RowNumber:=3:ColumnNumber:=2:
Assess sensitivity to entry in

row 3, column 2 of coefficient matrix.
> Adelta:=Matrix(m,n,{(RowNumber,ColumnNumber)=delta });
Create an m by n perturbation matrix.

Adelta =

0 0
0 0
0 δ

> LPMatrixNew:=
<UnitVector(1,m+1)|<convert(-c,Matrix)+y.(A+Adelta),M.(A+Adelta)>|

<y,M>|<y.b,M.b>>;

Create new tableau matrix that results from perturbing assigned entry

of A.

LPMatrixNew =

1 0 δ 0 1
2 1 46

0 1 δ 0 −1 1 4
0 0 −δ 1 1 −1 4
0 0 1 − δ 0 3

2 −1 10

> Iterate(LPMatrixNew, 3,2);

z x1 x2 s1 s2 s3 RHS
1 0 0 0 1

2 − 3
2

δ
1−δ 1 + δ

1−δ 46 − 10δ
1−δ

0 1 0 0 −1 − 3
2

δ
1−δ 1 + δ

1−δ 4 − 10δ
1−δ

0 0 0 1 1 + 3
2

δ
1−δ −1 − δ

1−δ 4 + 10δ
1−δ

0 0 1 0 1 + 3
2

1
1−δ − 1

1−δ
10

1−δ

> solve(LPMatrixNew[1,5]>=0 and LPMatrixNew[1,6]>=0 and LPMatrixNew[2,7]>=0
and LPMatrixNew[3,7]>=0 and LPMatrixNew[4,7]>=0,delta);

Determine conditions under which no further pivots are necessary

and basic variables are all nonnegative.

RealRange
(−2

3
,

1

4

)

Exercises Section 4.2

1. Verify formula (4.31).

2. Consider the LP

maximize z = 3x1 + 2x2 + x3

subject to

x1 − 2x2 + 3x3 ≤ 4

x1 + 3x2 − 2x3 ≤ 15

2x1 + x2 + x3 ≤ 10

x1, x2, x3 ≥ 0.

140 Chapter 4. Duality and Sensitivity Analysis

(a) Solve this LP. One of the three decision variables in your solution
should be nonbasic.

(b) By how much can the objective coefficient of x1 increase or decrease
and the set of basic variables in the solution be unchanged from
that of original LP? For this range of coefficient values, what are
the values of the decision variables and objective function? Repeat
this process, separately, for each of the other objective coefficients.

(c) By how much can the bound in the first constraint increase or
decrease and the set of basic variables in the solution be unchanged
from that of the original LP? For this range of values, what are
the values of all variables, both decision and slack, as well as
the objective function? What is the corresponding shadow price?
Repeat this process for the bound in the second constraint.

(d) Now consider the LP formed by changing the bounds on the sec-
ond and third constraints:

maximize z = 3x1 + 2x2 + x3

subject to

x1 − 2x2 + 3x3 ≤ 4

x1 + 3x2 − 2x3 ≤ 15 + δ2

2x1 + x2 + x3 ≤ 10 + δ3

x1, x2 ≥ 0.

Sketch the set of ordered pairs, (δ2, δ3), for which the set of basic
variables in the solution is the same as that of the original LP. For
points in this set, what are the values of the decision variables and
the objective function in terms of δ2 and δ3?

(e) By how much can the coefficient of x1 in the second constraint
increase or decrease and the set of basic variables in the solution
be unchanged from that of the original LP? For this range of values,
what are the values of all variables, both decision and slack, as well
as the objective function?

3. Suppose that FuelPro currently produces its two fuels in a manner that
optimizes profits but is considering adding a mid-grade blend to its line
of products. In terms of the LP, this change corresponds to introducing
a new decision variable. Each gallon of mid-grade fuel requires two
gallons of stock A and two and a half gallons of stock B and, hence,
diverts resources away from producing the other fuel types. The com-
pany seeks to determine the smallest net profit per gallon of mid-grade
blend that is needed to increase the company’s overall profit from its
current amount.

(a) The introduction of a third fuel type adds an extra column to the

4.2. Exercises Section 4.2 141

original coefficient matrix. Determine the new coefficient matrix,
Ã.

(b) Suppose that pm denotes the profit per gallon of the mid-grade fuel
type. Then c̃ = [4, 3, pm] records the profit per gallon of each of the
three fuel types. If y0 denotes the solution of the original dual LP,
calculate −tildec + y0Ã in terms of pm.

(c) Explain why −tildec+y0Ã records the decision variable coefficients
in the top row of the tableau that result if the same steps of the
simplex algorithm used to solve the original LP are applied to the
new LP having the third decision variable.

(d) Use the result from the previous question to determine the smallest
net profit per gallon of mid-grade blend that is needed to increase
the company’s overall profit from its current amount.

142 Chapter 4. Duality and Sensitivity Analysis

4.3 The Dual Simplex Method

Theorem 2.4.1 dictates that when we use the simplex algorithm to solve the
standard maximization problem, (4.1), the tableau matrix at each iteration
takes the general form

[
1 −c + yA y yb
0 MA M Mb

]
. (4.32)

At each iteration, the primal LP has a basic feasible solution, whose values
are recorded by the entries of Mb. Unless the LP is degenerate, all such values
are positive. During this process but prior to the termination of the algorithm,
at least one entry of y or −c + yA is negative, implying y is not dual-feasible.
At the completion of the algorithm, both yA ≥ c and y ≥ 0, whereby we
simultaneously obtain optimal solutions to both the primal LP and its dual.

Unfortunately, if b has one or more negative entries, then so too can Mb. In
this case the primal has a solution that is basic, but not basic feasible. The
dual simplex method, which uses the same tableau as the original method, is
well suited for addressing such a situation. At each stage of the algorithm,
all entries of y and −c + yA are nonnegative, implying y is dual-feasible.
At the same time, at least one entry of the rightmost tableau column, Mb, is
negative, so that the basic variable values for the primal at that stage constitute
merely a basic, but not basic feasible, solution. The goal of the algorithm then
becomes one of making all entries of Mb nonnegative. For when we achieve
this outcome, we obtain a basic feasible solution of the primal, whose values
are recorded by Mb, along with a basic feasible solution, y, of the dual. Since
their objective values are both recorded by yb, both solutions are optimal, and
our tableau is identical to that obtained using the regular simplex algorithm.

4.3.1 Overview of the Method

Here is a brief outline of the algorithm.

1. We start with a standard maximization problem (4.1) whose initial
tableau matrix is given by

[
1 −c 0 0
0 A Im b

]
. (4.33)

2. The process begins by finding an initial basic feasible solution, y, of the
dual LP. In other words, we need to find y ≥ 0 that satisfies yA ≥ c. In
general, finding y can prove difficult. However, one situation in which

4.3. The Dual Simplex Method 143

it is always easy to do so occurs when c ≤ 0. For in this situation, y = 0
is automatically dual-feasible since yA ≥ c. It is for this reason that the
dual simplex is well suited for an LP whose goal is to maximize an ob-
jective function whose decision variable coefficients are nonpositive, or,
equivalently, to minimize an objective function whose decision variable
coefficients are all nonnegative.

3. Unlike the usual simplex algorithm, where we first decide which non-
basic variable is to become basic, i.e., we determined the “entering vari-
able,” in the dual simplex algorithm, our first step is to decide which
negative basic variable is to become nonbasic, i.e., we determine the
“departing basic variable.” At the first iteration of the new algorithm,
this is accomplished by determining the most negative entry of b.

4. We perform the ratio test in a manner analogous to the usual simplex
algorithm in order to determine which nonbasic variable replaces the
departing variable in the set of basic variables. The tableau is updated.
The process is repeated until all values on the right-hand side of the
tableau are nonnegative. That is, the process terminates when we obtain
a basic feasible solution to the primal LP.

4.3.2 A Simple Example

To illustrate all details of the algorithm, we consider the following two-
variable minimization problem:

minimize w = 3x1 + 2x2 (4.34)

subject to

2x1 + 3x2 ≥ 30

−x1 + 2x2 ≤ 6

x1 + 3x2 ≥ 20,

whose feasible region is shown in Figure 4.3.

If we change the objective to that of maximizing z = −w = −3x1− 2x2, express
all constraints in≤ form, and introduce slack variables, s1, s2, and s3, we obtain
the tableau shown in Table 4.16.

TABLE 4.16: BV = {s1, s2, s3}
z x1 x2 s1 s2 s3 RHS
1 3 2 0 0 0 0

0 -2 -3 1 0 0 -30
0 -1 2 0 1 0 6
0 -1 -3 0 0 1 -20

144 Chapter 4. Duality and Sensitivity Analysis

x1

x2

FIGURE 4.3: Feasible region for LP (4.34).

Initially, we choose s1 = −30, s2 = 6, and s3 = −20 as our basic variables.
Together, with x1 = x2 = 0, they constitute a basic, but not basic feasible
solution, of (4.34). In terms of Figure 4.3, this initial basic solution corresponds
to the origin. In terms of the dual LP, y = [0, 0, 0], the slack variable coefficients
in the top row of Table 4.16, which is dual-feasible.

The tableau shows that s1 = −30 is the most negative basic variable, so it
becomes the departing variable. Thus we focus on its corresponding row and
must decide which nonbasic variable, x1 or x2, replaces s1. The two equations,
−2x1 + s1 = −30 and −3x2 + s1 = −30, indicate that we may let s1 increase to
zero by allowing either x1 to increase to 15 or x2 to increase to 10. The first of
these choices results in z = −3 ·15 = −45, the latter in z = 2 ·10 = −20. Because
our goal is to maximize z, we let x2 replace s1 as a basic variable and thus pivot
on the highlighted entry in Table 4.16. From this analysis, we conclude that
the dual simplex ratio test works as follows: Once we have determined a row
corresponding to the departing basic variable, i.e., a pivot row, we determine
the column of the entering basic variable as follows. For each negative entry
in the pivot row, we compute the ratio of the corresponding entry in the
top row (which is necessarily nonnegative by dual-feasibility) divided by the
pivot row entry. The smallest of all such ratios, in absolute value, determines
the pivot column.

We thus pivot on the highlighted entry in Table 4.16. The resulting tableau is
given in Table 4.17. Observe that x1 = 0 and x2 = 10, which corresponds to
another basic solution in Figure 4.3.

4.3. The Dual Simplex Method 145

TABLE 4.17: BV = {x2, s2, s3}
z x1 x2 s1 s2 s3 RHS
1 5

3 0 2
3 0 0 -20

0 2
3 1 − 1

3 0 0 10
0 − 7

3 0 2
3 1 0 -14

0 1 0 -1 0 1 10

At this stage, s2 is the only negative basic variable. By the ratio test applied
to the row corresponding to s, we see that x1 replaces s2 as a basic variable.
The resulting pivot leads to the final tableau in Table 4.18.

TABLE 4.18: BV = {x1, x2, s3}
z x1 x2 s1 s2 s3 RHS
1 0 0 8

7
5
7 0 -30

0 0 1 − 1
7

2
7 0 6

0 1 0 − 2
7 − 3

7 0 6
0 0 0 − 5

7 1 3
7 1 4

The dual simplex algorithm terminates at this stage because all entries in
the right-hand side of the tableau, below the top row, are nonnegative. In
other words, a basic feasible solution to the primal LP has been obtained. The
primal solution is given by (x1, x2) = (6, 6) with z = −30, which corresponds
to w = 30 in the original LP (4.34).

If we compare this method with the Big M Method for solving the LP, we see
that it provides an elegant and efficient method that completely eliminates
the need for introducing artificial variables.

Another setting in which the dual simplex method proves extremely useful
is in sensitivity analysis, specifically when one desires to know the effect of
adding a constraint to an LP. For example, suppose that FuelPro must add
a third stock, call it stock C, to each fuel type in order to reduce emissions.
Assume that production of each gallon of premium requires 5 gallons of
stock C and that production of each gallon of regular unleaded requires 6
gallons of stock C. Furthermore, at most 75 gallons of stock C are available
for production. It follows then that we must add the constraint 5x1 + 6x2 ≤ 75
to the original FuelPro LP. Instead of completely resolving a new LP, we may
begin with the final tableau for the original FuelPro LP, given by Table 2.4
from Section 2.1, and add a row and column, together with a slack variable
s4 corresponding to the new constraint. The result is shown in Table 4.19.

146 Chapter 4. Duality and Sensitivity Analysis

TABLE 4.19: FuelPro tableau after addition of new constraint
z x1 x2 s1 s2 s3 s4 RHS

1 0 0 0 1
2 1 0 46

0 1 0 0 -1 1 0 4
0 0 0 1 1 -1 0 4
0 0 1 0 3

2 -1 0 10
0 5 6 0 0 0 1 75

To update the values of the basic variables x1 and x2 in the tableau, we must
perform two pivots. The resulting tableau is given in Table 4.20.

TABLE 4.20: Updated tableau after pivots are performed

z x1 x2 s1 s2 s3 s4 RHS

1 0 0 0 1
2 1 0 46

0 1 0 0 -1 1 0 4
0 0 0 1 1 -1 0 4
0 0 1 0 3

2 -1 0 10

0 0 0 0 -4 1 1 -5

At this stage, y =
[
0 1

2 1 0
]

is dual-feasible so that we may apply the dual

simplex algorithm directly. Only one iteration is required, in which case we
replace a negative basic variable, s4, with the nonbasic variable s2. Pivoting
on the highlighted entry in Table 4.20 yields the final tableau in Table 4.21.

TABLE 4.21: Updated tableau after one dual-simplex iteration

z x1 x2 s1 s2 s3 s4 RHS

1 0 0 0 0 9
8

1
8

363
8

0 1 0 0 0 3
4 − 1

4
21
4

0 0 0 1 0 − 3
4

1
4

11
4

0 0 1 0 0 − 5
8

3
8

65
8

0 0 0 0 1 − 1
4 − 1

4
5
4

From this final tableau, we observe that the addition of the new constraint
leads to an updated solution of (.x1, x2) =

(
21
4 ,

65
8

)
with a corresponding profit

of z =
363

8
= 45.375. Observe how the added constraint has decreased FuelPro

Petroleum Company’s profit from the original model.

As the steps involved in applying the dual simplex algorithm are quite similar

4.3. Exercises Section 4.3 147

to those of its regular counterpart, we should not be surprised that the Maple
worksheet, Simplex Algorithm.mw, from Section 2.1 is easily modified to
execute the dual simplex method. Specifically, we substitute for the RowRatios
procedure in the original worksheet, a procedure that computes “column
ratios” instead. Syntax for doing so is given as follows:

> ColumnRatios:=proc(M,r) local k:
for k from 2 to nops(convert(Row(M,r),list))-1 do

if M[r+1,k]=0 then print(cat(‘‘Column’’, convert(k-1,string),

‘‘Ratio Undefined’’))

else print(cat(‘‘Column’’,convert(k-1,string), ‘‘Ratio= ’’,

convert(evalf(M[1,k]/M[r+1,k]),string))) end if; end do; end:

Here we follow our numbering convention that column 0 and row 0 denote
the leftmost column and top row, respectively, of the tableau matrix.

Exercises Section 4.3

1. Use the dual simplex algorithm to solve each of the following LPs.

(a)

minimize z = x1 + 4x2

subject to

x1 + 3x2 ≥ 1

4x1 + 18x2 ≥ 5

x1, x2 ≥ 0

(b)

minimize z = x1 + x2

subject to

x1 ≤ 8

−x1 + x2 ≤ 4

−x1 + 2x2 ≥ 6

2x1 + x2 ≤ 25

3x1 + x2 ≥ 18

−x1 + 2x2 ≥ 6

x1, x2 ≥ 0

148 Chapter 4. Duality and Sensitivity Analysis

2. Consider again the scenario when a third stock, stock C, is added to each
of the fuel types in the FuelPro LP. Assume that each gallon of premium
requires 5 units of stock C, each unit of regular unleaded requires 6 units
of stock C. What is the minimum number of available units of stock C
that will change the optimal solution from its value of (x1, x2) = (4, 10)
in the original LP?

Chapter 5

Integer Linear Programming

5.1 An Introduction to Integer Linear Programming and the
Branch and Bound Method

For many linear programming applications, we seek solutions in which all
decision variables are integer-valued. We have already discovered that, under
certain conditions, the solution of a minimum cost network flow problem has
this property. In this section we discover a general technique for solving linear
programming problems that require integer-valued solutions. Such an LP is
called an integer linear programming problem, or ILP.

5.1.1 A Simple Example

To gain a sense of how to solve ILPs, we first consider a simple production
problem faced by the Great Lakes Kayak Company (GLKC), which manufactures
two types of kayaks, one a recreational, i.e., “rec” kayak, suitable for use on
inland lakes and calm rivers, and the other a larger sea kayak suitable for open
water paddling on the Great Lakes and the ocean. Both kayaks are comprised
of two grades of plastic, labeled grades A and B. Each “rec” kayak requires 20
pounds of each grade plastic and sells for $300. The sea kayak, on the other
hand, require 10 pounds of grade A and and 30 pounds of grade B and sells
for $400. Suppose the daily availability of the plastic is given by 60 pounds
for grade A and 90 pounds for grade B. Under the assumption the company
sells all the kayaks that it produces, we wish to determine how many kayaks
of each type should be produced, subject to the given constraints, so as to
maximize daily revenue.

Letting x1 and x2 denote the numbers of produced rec kayaks and sea kayaks,
respectively, we can easily formulate GLKC’s goal as that of solving ILP (5.1):

149

150 Chapter 5. Integer Linear Programming

maximize z = 3x1 + 4x2 (5.1)

subject to

2x1 + x2 ≤ 6

2x1 + 3x2 ≤ 9

x1, x2 ≥ 0; x1, x2 ∈ Z.

Here, z represents the revenue, measured in hundreds of dollars. Note, in
particular, we require that x1 and x2 be integer-valued in the solution.

Figure 5.1 illustrates the candidate solution values of x1 and x2 for ILP 5.1,
namely the ordered pairs in the shaded region whose entries are integer-
valued. We call such candidates, feasible lattice points.

One approach to solving ILP 5.1 is of course to merely evaluate the objective
function at all feasible lattice points and to determine which produces the
largest objective value. If the inequalities that comprise the ILP produce a
bounded region, then there exist only a finite number of candidates from
which to choose. For small-scale problems, this approach is satisfactory, but
for larger-scale problems, it proves extremely inefficient, thereby motivating
the need for different methods.

5.1.2 The Relaxation of an ILP

To any ILP, there corresponds an LP, called the relaxation of the ILP, which is
formed by using the ILP but eliminating the constraint requirement that deci-
sion variables be integer-valued. For (5.1), the relaxation solution is straight-
forward to compute and is given by

x =

[
x1

x2

]
=

[
9/4
3/2

]
=

[
2.25
1.5

]
and z =

51

4
= 12.75. (5.2)

Because (5.1) is a maximization problem and because the constraints in (5.1)
are more restrictive than those in the relaxation, we may be assured that
the objective value in the solution of (5.1) is no larger than z = 12.75. This
principle holds in general: The optimal objective value of an ILP involving
maximization is no larger than that of the corresponding relaxation LP. Con-
sequently, if the relaxation has a solution whose decision variables happen to
be integer-valued, then this solution coincides with that of the original ILP. As
we shall discover, this fact proves crucial for developing a means of solving
ILPs.

Usually, the relaxation produces a solution in which decision variables are
not integer-valued. Figure 5.1 illustrates such an outcome for the GLKC LP.

5.1. An Introduction to Integer Linear Programming and the Branch and Bound Method 151

While the shaded portion represents the feasible region for the relaxation LP,
only the lattice points in this feasible region are also feasible for the ILP.

x1

x2

(
9
4

3
2

)

FIGURE 5.1: Feasible region and solution for the GLKC ILP relaxation.

A naive approach to solving the ILP consists of rounding off the relaxation
solution to the nearest lattice point. Unfortunately, this approach can lead to
decision variable values that do not correspond to the optimal solution or are
infeasible to begin with.

_ _

Waypoint 5.1.1. Determine the solution of ILP (5.1) by graphical in-
spection of Figure 5.1. How does this solution compare to that of the
relaxation or to that obtained by rounding off the relaxation solution?

_ _

5.1.3 The Branch and Bound Method

The branch and bound method is a technique for solving an ILP, which is based
upon solving a carefully chosen sequence of closely related LP’s. The first
step of the method requires solving the corresponding relaxation LP. If the
solution (x1, x2) of the relaxation is integer valued, then this solution coincides
with that of the ILP. If not, the original feasible region is partitioned into two

152 Chapter 5. Integer Linear Programming

disjoint (i.e., non-overlapping) regions, neither of which contains (x1, x2). Each
of these two regions gives rise to a new LP, which is merely the original LP
together with an additional constraint. These two new LPs are then solved, a
process we shall refer to as branching. If an integer-valued solution arises from
one of these new LPs, then it becomes a candidate solution for the original ILP.
If an integer-valued solution does not arise, then the corresponding region
is again partitioned, and the process repeats itself. Eventually, all cases are
exhausted, and we obtain an optimal solution for the ILP.

We illustrate the technique by applying it to the GLKC ILP. The solution of
the relaxation is given by

x =

[
x1

x2

]
=

[
2.25
1.5

]
and z = 12.75.

Neither of the decision variables in this solution is integer-valued. To parti-
tion the feasible region into two disjoint regions neither of which contains
(2.25, 1.5), we have a choice of branching on either of the decision variables in
a way that removes the given solution value from consideration in a newly
designed LP.

By branching at a particular stage on a decision variable xi in an LP’s solution,
we simply mean we solve two new LPs. If x̃i denotes the value of the decision
variable xi in the LPs solution, which is not integer-valued at that stage, the
first new LP is the LP at that stage, together with the added constraint that xi

is greater than or equal to the smallest integer greater than x̃i. The second LP
is defined analogously, but the added constraint is instead that xi is less than
or equal to the largest integer less than x̃i.

Here we elect to branch on x1. To eliminate x1 = 2.25 from arising in a new
solution, we consider two new LPs:

maximize z = 3x1 + 4x2 (5.3)

subject to

Original constraints plus

x1 ≤ 2

x1, x2 ≥ 0

and

maximize z = 3x1 + 4x2 (5.4)

subject to

Original constraints plus

x1 ≥ 3

x1, x2 ≥ 0.

5.1. An Introduction to Integer Linear Programming and the Branch and Bound Method 153

Note that the first of these LPs is nothing more than our original LP using
that portion of its feasible region in Figure 5.2 that falls to the left of x1 = 2.
The second LP uses that portion to the right of x1 = 3.

x1

x2

FIGURE 5.2: Branching on x1 in the feasible region of the relaxation LP.

Solving LPs (5.3) and (5.4) we obtain the following solutions, respectively:

1. x1 = 2, x2 = 1.6̄, and z = 12.6̄;

2. x1 = 3 x2 = 0, and z = 9.

We now branch again by using these results and adding more constraints
to the corresponding LPs. However, the solution of (5.4) is integer-valued,
so adding more constraints to (5.4) can only produce an LP whose optimal

objective value is no greater than 9. For this reason, we label x =

[
3
0

]
, which

corresponds to z = 9, a candidate for the optimal solution of (5.2), and we
branch no further on LP (5.4).

The solution of (5.3) produces a value of x2 that is not integer-valued, so we
branch on x2 and form two new LPs that arise by eliminating x2 = 1.6̄ from
consideration. These are given as follows:

154 Chapter 5. Integer Linear Programming

maximize z = 3x1 + 4x2 (5.5)

subject to

Original constraints plus

x1 ≤ 2

x2 ≤ 1

x1, x2 ≥ 0

and

maximize z = 3x1 + 4x2 (5.6)

subject to

Original constraints plus

x1 ≤ 2

x2 ≥ 2

x1, x2 ≥ 0.

The respective solutions of (5.5) and (5.6) are as follows:

1. x1 = 2, x2 = 1, and z = 10;

2. x1 = 1.5, x2 = 2, and z = 12.5.

These results indicate that x =

[
2
1

]
is also a candidate solution. Because its

objective value is larger than that produced by the first candidate solution,

x =

[
3
0

]
, we eliminate the first candidate from further consideration.

The solution of (5.6) produces a value of x1 that is not integer-valued, so we
branch on x1, creating two new LPs that arise by eliminating x1 = 1.5 from
consideration:

maximize z = 3x1 + 4x2 (5.7)

subject to

Original constraints plus

x1 ≤ 2

x2 ≥ 2

x1 ≤ 1

x1, x2 ≥ 0

5.1. An Introduction to Integer Linear Programming and the Branch and Bound Method 155

and

maximize z = 3x1 + 4x2 (5.8)

subject to

Original constraints plus

x1 ≤ 2

x2 ≥ 2

x1 ≥ 2

x1, x2 ≥ 0.

Clearly, the first constraint in (5.7) is redundant in light of the newly added,
more restrictive third constraint. Moreover, the first and third constraints in
(5.8) can be combined into the equality constraint, x1 = 2. We only express
the constraints for each LP in this manner so as to emphasize the manner in
which we are adding more and more constraints to the original LP at each
stage of branching.

The second of the preceding LPs is infeasible. The first has its solution given
by

x1 = 1, x2 = 2.3̄, and z = 12.3̄.

Branching on x2 in (5.7) gives two more LPs:

maximize z = 3x1 + 4x2 (5.9)

subject to

Original constraints plus

x1 ≤ 2

x2 ≥ 2

x1 ≤ 1

x2 ≤ 2

x1, x2 ≥ 0

156 Chapter 5. Integer Linear Programming

maximize z = 3x1 + 4x2 (5.10)

subject to

Original constraints plus

x1 ≤ 2

x2 ≥ 2

x1 ≤ 1

x2 ≥ 3

x1, x2 ≥ 0.

LPs (5.9) and (5.10) produce solutions of x =

[
1
2

]
and x =

[
0
3

]
, respectively,

with corresponding objective values of z = 11 and z = 12. Both are candidate
solutions, so we branch no further.

At this stage the branching process is complete, and we have determined

four candidate solutions exist. The first of these, x =

[
3
0

]
, has already been

eliminated from consideration. Of the remaining three, x =

[
2
1

]
, x =

[
1
2

]
, and

x =

[
0
3

]
, the last yields the largest objective value of z = 12. Thus, ILP (5.1) has

its solution given by x =

[
0
3

]
so that GLKC should produce no “rec” kayaks

and three sea kayaks.

The branching process outlined in the preceding discussion can be visualized
through construction of a tree diagram as shown in Figure 5.3. When passing
from one LP to an LP in a lower-level branch, we merely add a new constraint.

5.1. An Introduction to Integer Linear Programming and the Branch and Bound Method 157

Relaxation of ILP:

x =

[
2.25
1.5

]

z = 12.75

x =

[
2

1.6̄

]

z = 12.6̄

x =

[
3
0

]

z = 9
Candidate Solution

x =

[
2
1

]

z = 10
Candidate Solution

x =

[
1.5
2

]

z = 12.5

x =

[
1

2.3̄

]

z = 12.3̄
Infeasible

x =

[
1
2

]

z = 11
Candidate Solution

x =

[
0
3

]

z = 12
Optimal Solution

x1 ≤ 2 x1 ≥ 3

x1 ≤ 2, x2 ≤ 1 x1 ≤ 2, x2 ≥ 2

x1 ≤ 2, x2 ≥ 2, x1 ≤ 1 x1 ≤ 2, x2 ≥ 2, x1 ≥ 2

x1 ≤ 2, x2 ≥ 2, x1 ≤ 1, x2 ≤ 2 x1 ≤ 2, x2 ≥ 2, x1 ≤ 1, x2 ≥ 3

FIGURE 5.3: Tree diagram for ILP (5.1).

158 Chapter 5. Integer Linear Programming

Here are some points to bear in mind when using the branch and bound
method.

1. Create a tree diagram with nodes and arrows. Each node should clearly
convey the LP being solved, together with its optimal solution, espe-
cially the objective function value.

2. Along each branch, or edge, of the tree diagram connecting two nodes,
indicate the constraint that is added to the LP at the top node in order
to formulate the LP of the bottom node.

3. Before branching on a particular variable, pause to consider whether
doing so is absolutely necessary. Remember that in a maximization
(resp. minimization) problem, objective values can only decrease (resp.
increase) from one node to a lower node connected along a particular
branch.

4. At a certain point in the solution process, all possible cases along a
branch become exhausted and other previously constructed branches
must be examined for candidate solutions. Backtracking, the process of
revisiting unresolved branches in exactly the reverse order they were
created, is a systematic means for carrying out this process.

5.1.4 Practicing the Branch and Bound Method with Maple

Practicing the branch and bound method is straightforward using Maple’s
LPSolve command. We first solve the relaxation LP and then progressively
add more inequalities to the constraint list until the ILP is solved. Here is
syntax from a worksheet, Practicing the Branch and Bound Method.mw
that solves the relaxation of the GLKC ILP, along with the LP formed by
adding the inequality x1 ≥ 3 to the relaxation at the first branch.

> restart:with(LinearAlgebra):with(Optimization):
> c:= Vector[row]([3,4]);
Enter objective coefficients.

c :=
[
3 4

]

> A:=Matrix(2,2,[2,1,2,3]);
Enter constraint matrix.

A :=

[
2 1
2 3

]

> b:=<6,9>;
Enter constraint bounds.

b :=

[
6
9

]

5.1. An Introduction to Integer Linear Programming and the Branch and Bound Method 159

> x:=<x1,x2>;
Create vector of decision variables.

x :=

[
x1

x2

]

> ConstraintMatrix:=A.x-b:
> Constraints:=seq(ConstraintMatrix[i]<=0,i=1..2);

Form constraints by extracting components of Ax-b as a sequence

and setting each component less than or equal to 0.

constraints := 2x1 + x2 − 6 <= 0, 2x1 + 3x2 − 9 <= 0

> LPSolve(c.x,[constraints],assume=’nonnegative’,’maximize’); #
Solve relaxation.

[12.750000000000, [x1 = 2.25000000000000000, x2 = 1.50000000000000022]]

> LPSolve(c.x,[constraints,x1 >=3],assume=’nonnegative’,’maximize’);
Add an inequality to form a new list of constraints. Then solve

the resulting LP.

[9, [x1 = 3, x2 = 0]]

Remaining LPs that result from further branching are handled in a similar

manner so as to obtain the final solution of x =

[
0
3

]
.

5.1.5 Binary and Mixed Integer Linear Programming

Two very important subclasses of ILPs arise frequently in real-world applica-
tions. The first consists of binary linear programming problem, or BLPs, in which
each decision variable must assume the value of zero or one in the final solu-
tion. The second is comprised of mixed integer linear programming problems, or
MILPs, in which some, but not all decision variables must be integer-valued
in the solution. Solving mixed MILPs is easily accomplished using the branch
and bound method, with branching done only on those variables required to
be integer-valued.

For example, consider the mixed MILP,

maximize z = x1 + 3x2 + 3x3 (5.11)

subject to

x1 + 3x2 + 2x3 ≤ 7

2x1 + 2x2 + x3 ≤ 11

x1, x2, x3 ≥ 0; x1, x3 ∈ Z.

160 Chapter 5. Integer Linear Programming

The solution to the relaxation of (5.11) is given by x =

0
0

3.5

 with correspond-

ing objective value, z = 31.5. Since only x1 and x3 must be integer-valued, we
restrict all branching to these two variables. As the former is already integer-
valued in the relaxed solution, we branch on x3 and consider the original
constraints together with two different possibilities for x3: x3 ≤ 3 and x3 ≥ 4.
The former case leads to a candidate solution for the MILP; the latter leads to
infeasibility. The candidate solution is optimal and is labeled in Figure 5.4.

Relaxation of MILP:

(x1, x2, x3) =
(
0, 0,

7

2

)

z = 10.5

(x1, x2, x3) =
(
0,

1

3
, 3

)

z = 10
Optimal solution

Infeasible

x3 ≤ 3
x3 ≥ 4

FIGURE 5.4: Tree diagram for MILP (5.11).

5.1.6 Solving ILPs Directly with Maple

While Maple’s LPSolve command is useful for practicing the branch
and bound method, the command already has built-in options for solv-
ing ILPs directly. To solve an ILP having no sign restrictions, simply
add the option assume=integer. For an ILP requiring nonnegative deci-
sion variable values, add assume=nonnegint instead. For a MILP, the op-
tion integervariables=[list] specifies which particular variables are re-
quired to take on integer variables. For a BLP, adding assume=binary
requires all decision variables equal to 0 or 1 in the solution, whereas
binaryvariables=[list] specifies which subset of the decision variables
have binary values. Finally, the option depthlimit=n specifies the number
of branching levels used by Maple in its solution process. For the GLKC ILP,
four branching levels were required. Since Maple’s default number is three,
an error message is returned unless the depthlimit is assigned a sufficiently
large value.

5.1. An Introduction to Integer Linear Programming and the Branch and Bound Method 161

Here is a sample worksheet illustrating the use of these command options. In
the first example, Maple solves the GLKC ILP (5.1) using the matrix inequality
form as discussed in Section 1.1.3. In the second, Maple solves MILP (5.11).

> restart:with(LinearAlgebra):with(Optimization):

> c:=Vector[row]([3,4]);
Create vector of objective coefficients.

c :=
[
3 4

]

> A:=Matrix(2,2,[2,1,2,3]);
Matrix of constraint coefficients.

A :=

[
2 1
2 3

]

> b:=<6,9>;
Constraint bounds.

b :=

[
6
9

]

> LPSolve(c, [A, b], assume = nonnegint, ’maximize’, depthlimit
= 5); [

12

[
0
3

]]

> LPSolve(x1+3x2+3x3,[x1+3x2+2x3<=7, 2x1+2x2+x3<=11],assume=nonnegative,
integervariables=[x1,x3],’maximize’);

Solve the LP, specifying x1 and x3 are integer-valued.

[10.000000000000, [x1 = 0, x2 = .333333333333333315, x3 = 3]]

5.1.7 An Application of Integer Linear Programming: The Travel-
ing Salesperson Problem

Integer linear programming has an enormous, diverse number of applica-
tions. One of the most widely studied problems in this area consists of the
“Traveling Salesperson Problem,” or TSP.

The TSP seeks to determine the minimum distance an individual must travel
in order to begin at one location, pass through each of a list of other inter-
mediate locations exactly one time, and return to the starting point. Such a
round trip is known as a tour.

We will consider the general setting consisting of n destinations, where n ≥ 2.
Figure 5.5 illustrates an example of a tour for the particular case of n = 4. We
can represent this example through the notation 1→ 3→ 2→ 4→ 1.

162 Chapter 5. Integer Linear Programming

1

3

2

4

FIGURE 5.5: Tour consisting of 4 destinations.

To solve the TSP, we first define the binary decision variables, xi j, where
1 ≤ i, j ≤ n. A value of xi j = 1 in the final solution indicates that travel takes
place from destination i to j; a value of 0 indicates that no such travel takes
place. That no travel takes place from a destination to itself dictates that the
problem formulation must guarantee a solution in which xii = 0, for 1 ≤ i ≤ n.

Each location is the starting point from which one travels to a new destination,

a condition expressed as

n∑

j=1

xi j = 1 for 1 ≤ i ≤ n. Similarly, each destination

is also ending point of travel from a previous destination so that

n∑

j=1

x ji = 1

for 1 ≤ i ≤ n. We will denote the distance between locations i and j, where
1 ≤ i, j ≤ n, by di j. Of course, di j = d ji, and to ensure that xii = 0 for 1 ≤ i ≤ n, we
set each dii =M, where M is a number much larger than any distance between
two different destinations. With this notation, the total distance traveled is

given by D =

n∑

i=1

n∑

j=1

di jxi j.

At first glance, it might then appear that the solution to the TSP is the same
as that obtained by solving the BLP

5.1. An Introduction to Integer Linear Programming and the Branch and Bound Method 163

minimize D =

n∑

i=1

n∑

j=1

di jxi j (5.12)

subject to
n∑

i=1

xi j = 1, 1 ≤ i ≤ n

n∑

j=1

x ji = 1, 1 ≤ i ≤ n

xi, j ∈ {0, 1}, 1 ≤ i, j ≤ n.

Unfortunately, (5.12) possesses a major problem. Namely, it includes as fea-
sible solutions, decision variable values that do not correspond to tours, but
instead to combinations of subtours. A subtour is a tour of a proper subset of
the set of destinations.

Figure 5.6 illustrates an example consisting of two subtours of n = 4 destina-
tions. In terms of notation, 1→ 3→ 1 and 2 → 4→ 2. The decision variable
values equal to 1 are precisely x13, x31, x24, and x42. These values satisfy the
feasibility criteria in (5.12), but they do not form a tour.

1

3

2

4

FIGURE 5.6: Two subtours of 4 destinations.

To guarantee that only tours, and not subtours, are feasible, we must introduce
more decision variables and use these to add additional constraints to (5.12).
We label these decision variables as pi, where 1 ≤ i ≤ n, and let each pi denote

164 Chapter 5. Integer Linear Programming

the position of destination i in a tour. For example, if 1→ 3→ 2→ 4→ 1, then
p1 = 1, p3 = 2, p2 = 3, and p4 = 4. Note that for each i, 1 ≤ pi ≤ n. Furthermore,
to solve the TSP, we may assume we start at location 1, meaning p1 = 1.

As we shall discover, a family of additional constraints that guarantees only
tours, and not combinations of subtours, are feasible in (5.12) can be formu-
lated as

pi − p j + 1 ≤ (n − 1)(1− xi j) where 2 ≤ i, j ≤ n. (5.13)

To verify that all tours satisfy (5.13), we consider two cases for each pair
of distinct destinations, i and j, in a tour, where 2 ≤ i, j ≤ n. In the first case
xi j = 1, meaning direct travel takes place from destination i to j and p j−pi = 1.
Therefore,

pi − p j + 1 = 0

= (n − 1)(1 − xi j)

so that (5.13) holds. In the second case xi j = 0, and no such direct travel
takes place. Since p1 = 1 and 2 ≤ i, j ≤ n, we have pi − p j ≤ n − 2 so that
pi − p j + 1 ≤ n − 1. Thus, (5.13) holds for the second case as well.

We now verify that values of decision variables corresponding to a combina-
tion of subtours passing through all destinations do not satisfy (5.13). To do
so, we assume to the contrary that a combination of subtours exists, satisfying
(5.13), and, from there, we establish a contradiction.

We begin by selecting the subtour not containing the first destination. Then,
for some k satisfying 2 ≤ k ≤ n− 1 and for some subset {i1, i2, . . . , ik} of distinct
elements of {2, . . . , n},

i1 → i2 → i3 → . . .→ ik = i1.

By repeated application of (5.13), we obtain the k − 1 inequalities

pi1 − pi2 + 1 ≤ (n − 1)(1− xi1i2), (5.14)

pi2 − pi3 + 1 ≤ (n − 1)(1− xi2i3),

... ≤
...

pik−1
− pik + 1 ≤ (n − 1)(1− xik−1ik).

Because ximim+1 = 1 for m = 1, 2, . . . , k − 1, the sum of the k − 1 inequalities in
(5.14) simplifies to

pi1 − pik + (k − 1) ≤ 0. (5.15)

However, i1 = ik so that pi1 = pik , from which it follows k ≤ 1. But this result
contradicts our assumption k ≥ 2. We may therefore conclude that decision
variables corresponding to a subtour do not satisfy constraints (5.13).

5.1. An Introduction to Integer Linear Programming and the Branch and Bound Method 165

Combining all these results, we finally obtain an ILP formulation of the TSP:

minimize D =

n∑

i=1

n∑

j=1

di jxi j (5.16)

subject to
n∑

i=1

xi j = 1, 1 ≤ i ≤ n

n∑

j=1

x ji = 1, 1 ≤ i ≤ n

pi − p j + 1 ≤ (n − 1)(1 − xi j), 2 ≤ i, j ≤ n

p1 = 1

2 ≤ pi ≤ n, 2 ≤ i ≤ n

pi ∈ Z, 1 ≤ i ≤ n.

xi, j ∈ {0, 1}, 1 ≤ i, j ≤ n.

_ _

Waypoint 5.1.2. Jane wishes to ride her bicycle on a tour passing
through five towns. The names of the towns and the distances between
them are summarized in Table 5.1. Assume that Jane’s ride starts in
Jamestown. Use Maple to determine the tour that minimizes her total
distance traveled. Hint: Define the two families of variables in (5.16)
using arrays:

> x:=array(1..5,1..5):

> p:=array(1..5):

The first two families of constraints can be formulated by combining
the add and seq commands. For the third family of constraints, next
two seq commands as follows:

> seq(seq(p[i]-p[j]+1<=4*(1-x[i,j]),j=2..n),i=2..n):

Your results should indicate that Jane rides from Jamestown to Cut-
lerville to Caledonia to Dorr to Byron Center, and back to Jamestown.

_ _

While (5.16) provides a means of stating the TSP as an ILP, the task of solving
it proves inefficient, even for problems involving a moderate number of

166 Chapter 5. Integer Linear Programming

TABLE 5.1: Distances between towns for Jane’s bicycle ride

City Jamestown Dorr Byron Center Caledonia Cutlerville
Jamestown � 13 7 22 11
Dorr 13 � 6 15 11
Byron Center 7 6 � 13 6
Caledonia 22 15 13 � 12
Cutlerville 11 11 6 12 �

decision variables. For this reason, determining more efficient methods for
solving larger-scale TSPs remains a much-pursued goal in the field of linear
programming.

Exercises Section 5.1

1. Use the branch and bound method to solve each of the following ILPs.

(a)

maximize z = 2x1 + 3x2

subject to

2x1 + x2 ≤ 7

x1 + 2x2 ≤ 7

x1, x2 ≥ 0; x1, x2 ∈ Z

(b)

maximize z = 5x1 + 6x2

subject to

2x1 + 3x2 ≤ 18

2x1 + x2 ≤ 12

3x1 + 3x2 ≤ 20

x1, x2 ≥ 0; x1, x2 ∈ Z

5.1. Exercises Section 5.1 167

(c)

maximize z = 4x1 + 3x2 + 5x3

subject to

x1 + x2 + x3 ≤ 17

6x1 + 3x2 + 3x3 ≤ 22

3x1 + 3x2 ≤ 13

x1, x2, x3 ≥ 0; x1, x2, x3 ∈ Z

2. Solve the mixed-integer linear programming problem that arises by
restricting only x2 and x3 to be integers in 1c.

3. To what digits (0-9) can one assign each of the letters in the phrase below
to make the equation mathematically valid?

one + one + two + two + three + eleven = twenty (5.17)

(Hint: Note that only ten letters of the alphabet are used in this statement
so that we may number the letters. For example, suppose we number
“o”, “n”, and “e” as 1, 2, and 3, respectively. If we define xi j, where
1 ≤ i ≤ 10 and 0 ≤ j ≤ 9 is a binary decision variable whose solution
value is 1 provided letter i corresponds to digit j, then the letter “o” is

represented by the sum,

9∑

j=0

jx1 j, the letter “n” by the sum

9∑

j=0

jx2 j, and

the letter “e” by the sum

9∑

j=0

jx3 j. This means that the word “one” is

represented by the sum

100

9∑

j=0

jx1 j + 10

9∑

j=0

jx2 j +

9∑

j=0

jx3 j.

Other words are constructed in a similar manner. Constraints arise
from Equation (5.17), together with the fact that each digit corresponds
to exactly one letter and that equation. Since the goal is merely one of
determining feasible values for these variables, the objective function
can be chosen as a constant and the goal as either maximization or
minimization.)

4. Suppose Jane wishes to bring snacks high in carbohydrate content with
her as she completes her bicycle ride. Weights and carbohydrate content
for her five choices are summarized in Table 5.2. If Jane believes she can
only afford to bring 100 grams of food with her as she rides, how many
of each snack should she bring so as to maximize her total carbohydrate

168 Chapter 5. Integer Linear Programming

intake? What if Jane can bring 125 grams instead? 150 grams? (Note: An
IP having only one constraint, such as this, is an example of a knapsack
problem.)

TABLE 5.2: Weight and nutritional data taken from manufacturer’s web sites

Item Cereal Bar Powerbar TM Cliff Bar TM Luna Bar TM GU Gel TM

Carbs (gms.) 29 43 42 27 25
Weight (gms.) 42 65 68 48 32

5. Coach Anderson must decide his baseball team’s pitching rotation.1

The rotation will consist of four starting pitchers, one mid-innings relief
itcher, and one “closer,” (i.e., late inning pitcher). Coach Sparky has six
pitchers, whose earned-run-averages (ERAs) in these various roles are
summarized in Table 5.3.

TABLE 5.3: Pitching data for Coach Anderson’s team

Pitcher/E.R.A. Starting Mid-Innings Relief Closer
Clay 3.5 2.8 2.7
Don 2.42 2.45 2.8
Gary 3.16 3.2 3.6
Jack 2.5 2.6 2.8

Pedro 2.7 2.8 2.95
Rawley 3 2.7 2. 6

If each pitcher serves in exactly one role and if the average com-
bined earned-run-average is the average of the six pitchers’ earned-run-
averages in their assigned roles, what pitching rotation should Coach
Anderson choose in order to minimize the average combined earned-
run-average?

6. The n-Queens Problem asks for the largest number of queens that can
be placed on an n-by-n chessboard so that no two queens are capable
of attacking one another.2 Construct a BLP that solves the 8-Queens
Problem. That is, solve the problem for the standard size chessboard.
(Hint: Let xi j, where 1 ≤ i, j ≤ 8, denote a binary decision variable whose
solution value equals 1 provided a queen occupies the entry in row i,
column j of the chessboard. Then the sum of the decision variables
along each column, each row, and each diagonal cannot exceed 1.)

7. Suppose m is a positive integer, and let n = m2. In the n-by-n Sudoku

1Based upon Machol, [25], (1970).
2Based upon Letavec and Ruggiero, [22], (2002).

5.1. Exercises Section 5.1 169

puzzle, a player is given an n-by-n grid comprised of n, m-by-m non-
overlapping sub-grids.3 A digit between 1 and n appears in certain grid
entries. The goal of the puzzle is to enter a digit between 1 and n in each
of the remaining grid entries so that each row, each column, and each
m-by-m sub-grid contains exactly one of the n digits. An example of a
4-by-4 puzzle is depicted in Table 5.4. In this case m = 2 and n = 4.

TABLE 5.4: Example of a 4-by-4 Sudoku puzzle

1
2

4
3

(a) Formulate a BLP that solves the n-by-n Sudoku puzzle. To get
started, let xi jk, where 1 ≤ i, j, k ≤ n, denote a binary decision vari-
able, whose solution value equals 1 provided the entry in row i,
column j of the puzzle equals k, and zero otherwise. Let the objec-
tive of the BLP be any constant function; the constraints correspond
to feasible puzzle solutions and can be broken down as follows:

i. Each column contains one entry equal to k, where 1 ≤ k ≤ n.

ii. Each row contains one entry equal to k, where 1 ≤ k ≤ n.

iii. Every position in the puzzle must be filled.

iv. Certain puzzle entries are known from the outset. This can be
stated as a sequence of values, xi jk = 1, where each (i, j, k) is a
triple satisfying 1 ≤ i, j, k ≤ n.

v. Each m-by-m sub-grid contains exactly one of the n digits.
(Hint: Let Bp,q, where 1 ≤ p, q ≤ m, denote a sub-grid of the
puzzle. Then the entries of this sub-grid can be indexed by
ordered pairs, (i, j), where mp−m+1 ≤ i ≤ mp and mq−m+1 ≤
j ≤ mq.)

(b) Use your result to solve the puzzle shown in Table 5.4.

8. When an individual writes numerous checks, the possibility exists that
his or her bank will present several checks for payment against his or
her account on the same day.4 Depending upon the individual’s account
balance and the sequence in which these checks are processed, varying
amounts of insufficient fund (NSF) fees can be collected by the bank.
Some banks have used sequencing policies that maximize their total
collected NSF fees, a policy that has resulted in several lawsuits.

3Based upon Bartlett, et al., [3], (2008).
4Based upon Apte, et al.,[1], (2004).

170 Chapter 5. Integer Linear Programming

Consider an example in which Joe Freshman has a balance of $1200 in his
banking account, which charges a $20 NSF fee per bounced check. On
a particular day, the bank receives seven checks that it presents against
Joe Freshman’s account. These checks are for the following amounts:
$30, $80 ,$140, $160, $500, $600, and $800.

(a) Under a low-high policy, checks presented on the same day are
processed in the order of lower to higher check amounts. Calculate
the total amount of NSF fees the bank charges Joe under this policy.

(b) Under a high-low policy, checks presented on the same day are first
listed in order of descending amounts. Starting at the top of the list,
the bank ascertains whether the current balance exceeds the given
check amount. If so, the bank clears the check by deducting its
amount from the current balance and then moves to the next check
on this list. If not, the bank charges an NSF fee before proceeding
to the next check, which is of smaller amount and therefore may
not necessarily bounce. Calculate the total amount of NSF fees the
bank charges Joe under this policy. Your value should be larger
than that charged in (a).

To determine which strategy is optimal for Joe and which is optimal
for the bank, we let ci represent the amount of check i and let xi,
where 1 ≤ i ≤ 7, denote a binary decision variable whose solution
value equals 0 provided check i “bounces” and equals 1 if the check
“clears.”

(c) Formulate an expression for the total NSF fees collected by the
bank.

(d) Determine a constraint that represents the fact that the account
balance is at least as large as the sum of the cleared checks.

(e) Set up and solve a BLP that determines the order in which checks
should be processed so as to minimize the total NSF fees. How
does this result compare with the low-high policy?

(f) Now construct a new BLP that spells out the order in which the
bank should process the checks so as to maximize the NSF fees
it collects. Your objective function will be the same as that in the
previous question. However, your goal will now be to maximize
as opposed to minimize. To the previous BLP you will also need
to add seven new constraints, which help the bank identify checks
that can be “made to bounce,” so to speak. By considering the sepa-
rate cases, x j = 0 and x j = 1, explain why the following constraints
assist the bank in achieving this goal:

1200x j + c j ≥ (1200+ .01) −
7∑

i=1

cixi, where 1 ≤ j ≤ 7.

5.1. Exercises Section 5.1 171

(g) How does the solution of the BLP from the previous question
compare with that of the high-low policy?

172 Chapter 5. Integer Linear Programming

5.2 The Cutting Plane Algorithm

5.2.1 Motivation

From a graphical perspective, the branch and bound method determines an
ILP’s solution through a process of repeatedly subdividing the feasible region
of the corresponding relaxation LP. The cutting plane algorithm, developed
by Ralph Gomory, also involves an iterative process of solving LPs. Each
new LP consists of its predecessor LP, combined with an additional, cleverly
constructed constraint that “trims” the feasible region, so to speak, without
removing feasible lattice points.

Our primary focus will be on pure ILPs (as opposed to MILPs) having the
property that all constraint bounds and all decision variable coefficients are
integer-valued. The GLKC ILP,

maximize z = 3x1 + 4x2 (5.18)

subject to

2x1 + x2 ≤ 6

2x1 + 3x2 ≤ 9

x1, x2 ≥ 0; x1, x2 ∈ Z,

is a simple example of such a problem, and we will use it as a context for
constructing our new technique.

5.2.2 The Algorithm

We begin by adding slack variables, s1 and s2, to the constraints in (5.18)
and performing the simplex algorithm on the relaxation LP. The resulting
final tableau is shown in Table 5.5. Note that none of the basic variables are
integer-valued.

TABLE 5.5: Final tableau of the GLKC ILP relaxation
z x1 x2 s1 s2 RHS

1 0 0 1
4

5
4

51
4

0 1 0 3
4 − 1

4
9
4

0 0 1 − 1
2

1
2

3
2

An important tool in subsequent steps is the integer component, or floor function

5.2. The Cutting Plane Algorithm 173

of a real number. If x belongs to R, then the integer component of x, denoted

by ⌊x⌋, is the largest integer less than or equal to x. For example,
⌊

9
4

⌋
= 2

and
⌊
− 1

4

⌋
= −1. Clearly, ⌊x⌋ = x for every integer x. The fractional part of x is

defined as the difference x f = x − ⌊x⌋, which satisfies 0 ≤ x f < 1.

We now choose a row in (5.5) for which the corresponding basic variable is not
integer-valued. In this particular case, any row will suffice, but as a general
rule, we choose the row whose basic variable has its fractional value closest
to one-half. Thus, in this case we select the bottom row, which corresponds
to the equation

x2 −
1

2
s1 +

1

2
s2 =

3

2
. (5.19)

Each variable coefficient in (5.19) can be uniquely expressed as the sum of
integer and fractional components so that the equation is the same as

(1 + 0)x2 +

(
−1 +

1

2

)
s1 +

(
0 +

1

2

)
s2 = 1 +

1

2
. (5.20)

Rewriting (5.20) so that coefficients having integer components and coeffi-
cients having fractional components are grouped on opposite sides of the
equal sign, we obtain

x2 − s1 − 1 =
1

2
− 1

2
s1 −

1

2
s2. (5.21)

The “trimming” of the relaxation LP’s feasible region arises from the fact that
whenever terms of an equation corresponding to a row of the relaxation’s
final tableau are separated in this manner, with terms having integer com-
ponent coefficients on one side of the equation and terms having fractional
component coefficients on the other, each side of the resulting equation is
nonpositive whenever (x1, x2) is a feasible solution of the ILP.

To demonstrate that this assertion holds for this particular example, we first
consider the constraint equations, associated with the original relaxation of
(5.18):

2x1 + x2 + s1 = 6

2x1 + 3x2 + s2 = 9.

If (x1, x2) is a feasible solution of the ILP, then the corresponding values of s1

and s2 must be integer-valued. This fact follows from the feasibility assump-
tion, meaning x1 and x2 are both integer-valued, along with our assumption
that all constraint bounds and all decision variable coefficients of the ILP are
integer-valued. Therefore, x2 − s1 − 1 is integer-valued, and, in light of (5.21),

174 Chapter 5. Integer Linear Programming

so is
1

2
− 1

2
s1 −

1

2
s2. But both s1 and s2 are nonnegative by feasibility so that

1

2
− 1

2
s1−

1

2
s2 ≤

1

2
. Since

1

2
− 1

2
s1−

1

2
s2 is an integer bounded above by 1

2 , it must

be nonnegative. By (5.21) x2 − s1 − 1 ≤ 0 as well. Thus, we have established
that if (x1, x2) is feasible solution of the ILP, then the inequalities x2− s1−1 ≤ 0

and
1

2
− 1

2
s1 −

1

2
s2 ≤ 0 are both valid. This means that adding one or both of

them to the original ILP will “trim” the feasible region, so to speak, without
removing from consideration feasible solutions of the ILP.

We now introduce a new constraint to the relaxation that incorporates the

slack-variable inequality,
1

2
− 1

2
s1 −

1

2
s2 ≤ 0. If s3 denotes a new, nonnegative

slack variable and if we rearrange terms, this inequality leads to the equation

−1

2
s1 −

1

2
s2 + s3 = −

1

2
. (5.22)

We now add this equation to the relaxation solution tableau, (5.5), by adding
a new row and column. The result is shown in Table 5.6.

TABLE 5.6: Tableau for the relaxation after a new slack variable, s3, has been
introduced

z x1 x2 s1 s2 s3 RHS

1 0 0 1
4

5
4 0 51

4

0 1 0 3
4 − 1

4 0 9
4

0 0 1 − 1
2

1
2 0 3

2

0 0 0 − 1
2 − 1

2 1 − 1
2

At this stage of the algorithm, both s1 and s2 are nonbasic and s3 = −
1

2
. Thus,

the current basic variables constitute a basic, but not basic feasible solution,
of the LP formed by adding constraint (5.22) to the relaxation of (5.18). To
obtain a basic feasible solution, we utilize the dual simplex algorithm from
Section 4.3.

Since only s3 is a negative basic variable, we apply the ratio test to the bottom
row of (5.6) The result is that variable s1 replaces s3 as a basic variable. The
resulting tableau is given by (5.7).

The tableau in (5.7) marks the end of the first iteration of what we refer to as
the cutting plane algorithm.

The decision variable x1 is not integer-valued, so we repeat the process used
in the first iteration and determine a second additional constraint, which

5.2. The Cutting Plane Algorithm 175

TABLE 5.7: Tableau after the first iteration of the cutting plane algorithm

z x1 x2 s1 s2 s3 RHS

1 0 0 0 1 1
2

25
2

0 1 0 0 -1 3
2

3
2

0 0 1 0 1 -1 2
0 0 0 1 1 -2 1

is added to the LP relaxation. We first select the row containing the basic
variable whose fractional part is closest to 1

2 , which in this case corresponds
to x1.

While we could repeat the entire process of recording the equation corre-
sponding to this row, decomposing variable coefficients into their integer
and fractional components, and grouping terms with fractional coefficients
on one side of the equation, we see from close inspection of the first iteration
that a simpler means exists. Namely, we may perform the following steps:

1. Compute the fractional component of each entry in the row correspond-

ing to x1. The resulting values yield
[
0, 0, 0, 0, 0,

1

2
,

1

2

]
.

2. Add to (5.7) a new slack variable, s4. Entries in its corresponding col-
umn are all zero, except in a new row added to the tableau where the
entry corresponding to s4 equals 1 and all other entries consist of ad-
ditive inverses of the previously computed fractional components. The
resulting tableau is given by (5.8).

3. Perform the dual simplex algorithm. The first step of this algorithm
focuses on the new row just added to the tableau, which corresponds
to the negative basic variable s4.

TABLE 5.8: Tableau for the relaxation after a new slack variable, s4, has been
introduced

z x1 x2 s1 s2 s3 s4 RHS
1 0 0 0 1 1

2 0 25
2

0 1 0 0 -1 3
2 0 3

2
0 0 1 0 1 -1 0 2
0 0 0 1 1 -2 0 1
0 0 0 0 0 − 1

2 1 − 1
2

Executing the dual simplex algorithm a second time, we see that s3 replaces
s4 as a basic variable. The resulting pivot leads to the result in Table (5.9).

176 Chapter 5. Integer Linear Programming

TABLE 5.9: Tableau for the GLKC ILP after second iteration of cutting plane
algorithm

z x1 x2 s1 s2 s3 s4 RHS
1 0 0 0 1 0 1 12
0 1 0 0 -1 0 3 0
0 0 1 0 1 0 -2 3
0 0 0 1 1 0 -4 3
0 0 0 0 0 1 -2 1

The tableau indicates an optimal solution to original ILP given by

x =

[
x1

x2

]
=

[
0
3

]
and z = 12. In addition, all slack variables are integer-valued.

5.2.3 A Step-by-Step Maple Implementation of the Cutting Plane
Algorithm

The cutting plane algorithm is easy to implement with Maple. What follows
is a portion of a worksheet, Cutting Plane Algorithm.mw, demonstrating
how this is accomplished for the GLKC ILP. Missing from the beginning of
the worksheet are the following:

1. Contents of the worksheet Simplex Algorithm.mw from Section 2.1,
which allows the user to solve the ILP’s relaxation

2. The ColumnRatios procedure found at the end of Section 4.3.

In addition, we have omitted from the following worksheet a new Maple pro-
cedure, called fracpart, which computes the fractional part of its argument.
It can be defined at the start of the worksheet as follows:

fracpart:=proc(x) local y, y=x-floor(x):RETURN((y)):end:

For example, fracpart(-.25) returns .75.

We begin this portion of the worksheet with the final tableau matrix,
LPMatrix, that results when the simplex algorithm is used to solve the GLKC’s
ILP relaxation. Recall again our numbering convention that column 0 and row
0 denote the leftmost column and top row, respectively, of the tableau matrix.

> Tableau(LPMatrix);
Display final tableau for GLKC ILP relaxation.

z x1 x2 s1 s2 RHS
1 0 0 1

4
5
4

51
4

0 1 0 3
4 − 1

4
9
4

0 0 1 − 1
2

1
2

3
2

5.2. The Cutting Plane Algorithm 177

> evalf(%);

z x1 x2 s1 s2 RHS
1 0 0 .25 1.25 12.75
0 1 0 .75 −.25 2.25
0 0 1 −.5 .5 1.5

> m:=m+1:

> for j from 2 to m do evalf(fracpart(LPMatrix[j,n+m+1]));end do;
Determine basic variable whose fractional part is closest to

one half.
.25
.50

> k:=2:
Basic variable corresponding to row 2 has fractional part closest

to one half.

> NewRow:=-Vector[row]([seq(-fracpart(RowCoefficients[j]),j=1..(n+m+1)),-1,
-fracpart(LPMatrix[k+1,n+m+1])]);

Create new bottom row corresponding to added constraint.

NewRow :=
[
0 0 0 − 1

2 − 1
2 1 − 1

2

]

> LPMatrix:=<<SubMatrix(LPMatrix,1..m,1..(n+m))|ZeroVector(m)|
SubMatrix(LPMatrix,1..m,(m+n+1)..(m+n+1))>,NewRow>;
Create new matrix incorporating addition of new slack variable

to original LP’s relaxation.

LPMatrix :=

1 0 0 1
4

5
4 0 51

4

0 1 0 3
4 − 1

4 0 9
4

0 0 1 − 1
2

1
2 0 3

2

0 0 0 − 1
2 − 1

2 1 − 1
2

> x:=array(1..n):s:=array(1..m):
Create arrays of decision and slack variables.

> Labels:=Matrix(1,2+n+m,[z,seq(x[i],i=1..n),seq(s[j],j=1..m),RHS]):
Create a new top row of labels.

> Tableau(LPMatrix);

z x1 x2 s1 s2 s3 RHS
1 0 0 1

4
5
4 0 51

4

0 1 0 3
4 − 1

4 0 9
4

0 0 1 − 1
2

1
2 0 3

2

0 0 0 − 1
2 − 1

2 1 − 1
2

> ColumnRatios(LPMatrix,m);
Perform dual simplex algorithm ratio test on row m.

178 Chapter 5. Integer Linear Programming

“Column 1 Ratio Undefined”
“Column 2 Ratio Undefined”

“Column 3 Ratio = -.5000000000”
“Column 4 Ratio =-2.5000000000”

“Column 5 Ratio =0.”

> Iterate(LPMatrix,m,3);
Pivot on entry in row m, column 3 so that s1 replaces s3 as

a basic variable.

z x1 x2 s1 s2 s3 RHS
1 0 0 0 1 1

2
25
2

0 1 0 0 −1 3
2

3
2

0 0 1 0 1 −1 2
0 0 0 1 1 −2 1

> m:=m+1: # End of first iteration; repeat process.

> for j from 2 to m do evalf(fracpart(LPMatrix[j,n+m+1]));end do;
Determine basic variable whose fractional part is closest to

one half.

.5
0
0

> k:=1:
Basic variable corresponding to row 1 has fractional part closest

to one half.

> NewRow:=-Vector[row]([seq(fracpart(LPMatrix[k+1,j]),j=1..(n+m)),-1,
fracpart(LPMatrix[k+1,n+m+1])]);

Create new bottom row corresponding to added constraint.

NewRow :=
[
0 0 0 0 0 − 1

2 1 − 1
2

]

> LPMatrix:=<<SubMatrix(LPMatrix,1..m,1..(n+m))|ZeroVector(m)|
SubMatrix(LPMatrix,1..m,(m+n+1)..(m+n+1))>,NewRow>;
Create new matrix incorporating addition of new slack variable

to original LP’s relaxation.

> x:=array(1..n):s:=array(1..m):
Create arrays of decision and slack variables.

> Labels:=Matrix(1,2+n+m,[z,seq(x[i],i=1..n),seq(s[j],j=1..m),RHS]):
Create a new top row of labels.

5.2. Exercises Section 5.2 179

> Tableau(LPMatrix);

z x1 x2 s1 s2 s3 s4 RHS
1 0 0 0 1 1

2 0 25
2

0 1 0 0 −1 3
2 0 3

2
0 0 1 0 1 −1 0 2
0 0 0 1 1 −2 0 1
0 0 0 0 0 − 1

2 1 − 1
2

> ColumnRatios(LPMatrixNew,m); # Perform ratio test on row m.

“Column 1 Ratio Undefined”
“Column 2 Ratio Undefined”
“Column 3 Ratio Undefined”
“Column 4 Ratio Undefined”

“Column 5 Ratio = -1.”
“Column 6 Ratio = 0.”

> Iterate(LPMatrix,m,5);
Pivot on entry in row m, column 5 to obtain final tableau.

z x1 x2 s1 s2 s3 s4 RHS
1 0 0 0 1 0 1 12
0 1 0 0 −1 0 3 0
0 0 1 0 1 0 −2 3
0 0 0 1 1 0 −4 3
0 0 0 0 0 1 −2 1

5.2.4 Comparison with the Branch and Bound Method

When applied to the GLKC ILP, the cutting plane algorithm required only two
iterations starting with the relaxation LP’s final tableau, whereas the branch
and bound algorithm required four branching levels. On the basis of this
isolated example, we might conclude that the cutting plane algorithm is the
more efficient of the two algorithms. However, as a general rule, the opposite
is true, and the branch and bound is the preferred technique. Contemporary
methods utilize what are known as “cut and branch” techniques, whereby
the cutting plane algorithm is used to help solve intermediate LPs that arise
within a larger branch and bound framework.

Exercises Section 5.2

Use the Cutting Plane Algorithm to solve each of the following ILPs.

180 Chapter 5. Integer Linear Programming

1.

maximize z = 2x1 + 3x2

subject to

4x1 + 3x2 ≤ 8

2x1 + x2 ≤ 15

x1 + 2x2 ≤ 7

x1, x2 ≥ 0, x1, x2 ∈ Z

2.

maximize z = 4x1 + 3x2 + 5x3

subject to

x1 + x2 + x3 ≤ 17

6x1 + 3x2 + 3x3 ≤ 22

3x1 + 3x2 ≤ 13

x1, x2, x3 ≥ 0, x1, x2, x3 ∈ Z

Part II

Nonlinear Programming

181

Chapter 6

Algebraic Methods for Unconstrained
Problems

6.1 Nonlinear Programming: An Overview

The world we live in is “nonlinear” in that mathematical relationships be-
tween quantities are rarely described by simple linear functions. As a result,
nonlinear programming is an essential tool for solving problems from a va-
riety of disciplines. The goal of subsequent chapters is to become acquainted
with several such problems and to develop an understanding of fundamental
mathematical tools used to address them.

6.1.1 The General Nonlinear Programming Model

A nonlinear program, or NLP, is a generalization of the LP in which the ob-
jective function is permitted to be nonlinear and constraints are permitted to
take the form of nonlinear inequalities. Specifically, an NLP can be expressed
as follows:

minimize f (x1, x2, . . . , xn) (6.1)

subject to

g1(x1, x2, . . . , xn) ≤ 0

g2(x1, x2, . . . , xn) ≤ 0

...
...

gm(x1, x2, . . . , xn) ≤ 0.

Unless stated otherwise, we will incorporate any sign restrictions into the
constraints. Of course NLPs whose goal involves maximization and/or whose
constraints include equations as opposed to inequalities, can easily be con-
verted to the form of (6.1) through simple algebraic manipulations. Finally,
an NLP having no constraints is said to be unconstrained.

183

184 Chapter 6. Algebraic Methods for Unconstrained Problems

6.1.2 Plotting Feasible Regions and Solving NLPs with Maple

Feasible regions for NLPs are a bit more complicated to graph with Maple
than are those for LPs, due to the fact Maple’s inequal command only plots
feasible regions corresponding to lists of linear inequalities. However, with a
bit of creativity, we can work around this obstacle.

To illustrate this idea, we consider the simple two-variable NLP given by

maximize f (x1, x2) = x1x2 (6.2)

subject to

x2
1 + x2

2 ≤ 1

x1 ≥ 0.

Using the notation of (6.1) for the constraints, we note that (6.2) is equivalent
to

maximize f (x1, x2) = x1x2 (6.3)

subject to

x2
1 + x2

2 − 1 ≤ 0

−x1 ≤ 0.

The first constraint is nonlinear, so Maple’s inequal command cannot be used
to plot the feasible region. Instead, we combine piecewiseand implicitplot
as follows:

> restart:with(plots):
> g1:=(x1,x2)->x1ˆ2 + x2ˆ2-1;
Enter first constraint function.

g1 := (x1, x2)→ x2
1 + x2

2 − 1

> g2:=(x1,x2)->-x1;
Enter second constraint function.

g2 := (x1, x2)→ −x1

> F:=piecewise(g1(x1,x2)<=0 and g2(x1,x2)<=0,1);
Define a two-variable function that equals 1 precisely if its

input is feasible for the NLP.

F := (x1, x2)→ piecewise(g1(x1, x2) ≤ 0 and g2(x1, x2) ≤ 0, 1)

> FeasibleRegion:=implicitplot(F(x1,x2)=1,x1=0..1,x2=-1..1,color=grey,
grid=[200,200]):

Create feasible region plot using implicitplot command. The

horizontal and vertical viewing windows are divided into 200

grid points.

6.1. Nonlinear Programming: An Overview 185

> display(FeasibleRegion);

The result of the display command is shown in Figure 6.1.

x1

x2

FIGURE 6.1: Feasible region for NLP (6.2).

As was the case in the linear programming setting, contours are useful for
estimating the solution of an NLP. In Maple, they can be generated and then
superimposed on the feasible region by combining the contourplot and
display commands as was done in Section 1.2. Unfortunately, Maple does
not label contours. This fact, along with the nonlinearity of the objective and
constraints, can make estimating the solution of an NLP using its contour
diagram extremely difficult.

One means of gaining a better sense of how the objective function changes
within the feasible region is to add within the implicitplot command the
options filled = true, coloring = [white, black]. Doing so has the ef-
fect of shading between contours in such a way that smallest function values
correspond to white regions, largest values correspond to black, and inter-
mediate values to varying shades of grey. Maple syntax that achieves this
outcome is given as follows:

186 Chapter 6. Algebraic Methods for Unconstrained Problems

> f:=(x1,x2) -> x1*x2;

f := (x1, x2)→ x1x2

> ObjectiveContours:=contourplot(f(x1,x2),x1=0..1,x2=-1..1,filled
= true, coloring = [white, black]):

Create contour plot.

> display({FeasibleRegion,ObjectiveContours});
Superimpose contours on previously constructed feasible region.

The result in this case produces the graph in Figure 6.2. It suggests that the
solution of (6.2) occurs at the point on the unit circle corresponding to π

4 ,

which is of course (x1, x2) =
(

1√
2
, 1√

2

)
.

x1

x2

FIGURE 6.2: Feasible region and contour shading for NLP (6.2).

Maple’s NLPSolve command, located in the Optimizationpackage, functions
almost exactly as its linear programming counterpart, LPSolve. To solve NLP
(6.3), we merely enter the following:

> restart: with(Optimization):

6.1. Nonlinear Programming: An Overview 187

> f:=(x1,x2)->x1*x2;

f := (x1, x2)→ x1x2

> g1:=(x1,x2)->x1ˆ2 + x2ˆ2-1;

g1 := (x1, x2)→ x2
1 + x2

2 − 1

> g2:=(x1,x2)->-x1;

g2 := (x1, x2)→ −x1

> NLPSolve(f(x1,x2),[g1(x1,x2)<=0,g2(x1,x2)<=0],’maximize’);

.500000000001127654, [x1 = .707106781187344936, x2 = .707106781187344936]

Thus NLP (6.3) has a solution of (x1, x2) ≈ (.7071, .7071), with corresponding
objective value of .5. In Section 6.4 we will develop algebraic techniques that

prove this solution equals (x1, x2) =
(

1√
2
, 1√

2

)
.

6.1.3 A Prototype NLP Example

In Part I, the FuelPro Petroleum Companymodel served to illustrate a variety
of important linear programming principles. As two-variable models are
convenient for visualizing important concepts in general, we focus in Part II
on a simple two-variable NLP.

ConPro Manufacturing Company is a small business that produces large con-
crete pipes. The company seeks to maximize its profit subject to certain con-
straints. Assume pipe production is a function of material and labor and that
the number of units of each of these quantities is denoted by x1 and x2, re-
spectively. The company has determined that production, measured in units
of pipe, is given by the product power function

P(x1, x2) = x
1
2

1
x

1
3

2
. (6.4)

The function P is known as a Cobb-Douglas Production Function, whose general

form is given by P(x1, x2) = xα1 x
β

2
, where α, β > 0.

Each unit of produced pipe generates $1400 of revenue but costs $350 in
materials and $200 in labor to produce. The company has $40,000 of available
funds to spend, and the ratio of labor units to material units must be at least
one-third in order to ensure adequate labor to produce pipe from acquired
materials. Assume ConPro sells all the pipe that it produces.

188 Chapter 6. Algebraic Methods for Unconstrained Problems

ConPro ’s profit as a function of material and labor is given by revenue, less
material and labor cost:

f (x1, x2) = 1400P(x1, x2) − 350x1 − 200x2 (6.5)

= 1400x
1
2

1
x

1
3

2
− 350x1 − 200x2.

Funding limits imply that 350x1 + 200x2 ≤ 40, 000, and the requirement of
adequate labor to ensure pipe production of acquired materials forces
x1 ≤ 3x2. Assuming positive decision variable values capable of taking on
non-integer values, we obtain NLP (6.6):convert

maximize f (x1, x2) = 1400x
1
2

1
x

1
3

2
− 350x1 − 200x2 (6.6)

subject to

350x1 + 200x2 ≤ 40000

x1 − 3x2 ≤ 0

x1, x2 > 0.

Note that this NLP includes sign restrictions on its decision variables. By our
convention, these restrictions contribute two constraints,−x1 ≤ 0 and−x2 ≤ 0,
so that the NLP has four constraints total.

In subsequent chapters, we learn how nonlinear programming tools can be
used to address a variety of questions. Among these are the following:

1. How closely does P portray the actual production values?

2. In the absence of any constraints, what combination of material units
and labor units maximizes profit? Is this combination necessarily
unique?

3. If constraints are incorporated into the model, what new combination
maximizes profit? Again, is this combination unique?

4. If exact answers to the previous two questions are unattainable using
algebraic means, do numeric methods exist that achieve approximate
results?

Answers to these questions incorporate a variety of mathematical tools, most
notably those from linear algebra and multivariate calculus.

6.1. Exercises Section 6.1 189

_ _

Waypoint 6.1.1. Consider the ConPro NLP, (6.6).

1. Graph the feasible region for this NLP.

2. Use Maple to create a contour diagram of the objective function
and estimate the NLP’s solution.

3. Solve the NLP using Maple’s NLPSolve command.

_ _

Exercises Section 6.1

1. Express each of the following NLPs in the general form (6.1). Then
create a contour diagram for the objective function, and use your result
to estimate the solution of the NLP. Check your estimate using Maple’s
NLPSolve command.

(a)

minimize f (x1, x2) = x2
1 − 6x1 + x2

2 − 4x2

subject to

x1 + x2 ≤ 3

x1 ≤ 1

x2 ≥ 0

(b)

minimize f (x1, x2) = x3
1 − 2x1 − x2

subject to

x1 + x2 ≤ 1

x1, x2 ≥ 0

(c)

maximize f (x1, x2) = x2
1x2 − x1

subject to

−x1 + x2 ≥ 1

x2
1 + x2

2 ≤ 2

190 Chapter 6. Algebraic Methods for Unconstrained Problems

(d)

minimize f (x1, x2) = 4x2
1 − 12x1 + x2

2 − 6x2

subject to

x1 + x2
2 ≤ 2

2x1 + x2 = 1

(e)

maximize f (x1, x2) = ln(x2 + 1) − x2
1

subject to

(x1 − 1)2 + (x2 − 2)2 ≤ 1

−2x1 + x2 ≤ 1

(f)

minimize f (x1, x2) =
x1 + 2

x2 + 1

subject to

x1 + 2x2 ≤ 3

−x1 + x2 ≤ 1

2. (Pam’s Pentathlon Training Program) The women’s pentathlon consists of
five events: the 800 meter run, the 60 meter hurdles, the high jump and
long jump, and the shot put throw.1 Pam has decided to begin an off-
season training program combining weight lifting, distance running,
and speed workouts (e.g., sprints) in order to improve her performance
in her weakest two of the five events: the 800 meter run and the shot
put. Each week Pam plans to devote a certain number of hours to each
of these three activities, with the number devoted to each remaining
constant from one week to another.

Currently, Pam completes the 800 meter run in 3 minutes and throws
the shot put 6.7 meters. Pam’s coach estimates that for each hour per
week Pam devotes to weight lifting, she will decrease her 800 meter run
time by half that many seconds and increase her shot put distance by
one-tenth of a meter. Thus, for example, lifting weights two hours per
week will decrease her 800 meter run time by 1 second and increase
her shot put distance by .2 meters. Similarly, the coach estimates that
for each hour per week Pam devotes to distance running and for each
hour per week Pam devotes to speed workouts, she will decrease her
800 meter run time by that many seconds.

1Based upon Ladany, [20], (1975).

6.1. Exercises Section 6.1 191

Pam’s workout routine must adhere to certain constraints, which are as
follows:

(a) Pam is expected to train between six and ten hours per week.

(b) Between two and four hours of this time must be devoted to weight
lifting.

(c) Between three and four hours should be spent distance running.

(d) In order to ensure Pam devotes sufficient time to speed workouts,
she must allot at least 60% of her total running time to this activity.

According to International Amateur Athletic Federation guidelines,
the number of points contributing to Pam’s total pentathlon score
by her 800 meter run performance is determined using the formula,
P1 = .11193(254 − t)1.88, where t is the time, in seconds, required for
her to complete the run. Similarly, the number of points contributing
to Pam’s total pentathlon score by her shot put performance equals
P2 = 56.0211(d− 1.5)1.05, where d is the distance, in meters, of her throw.

Based upon this information, set up and solve an NLP having three de-
cision variables and ten constraints (including sign restrictions), whose
solution indicates the number of hours Pam should devote weekly to
weight lifting, distance running, and speed workouts in order to max-
imize her score in the 800 meter run and shot put components of the
pentathlon. By how much will her total score increase?

192 Chapter 6. Algebraic Methods for Unconstrained Problems

6.2 Differentiability and a Necessary First-Order Condition

We begin our study of nonlinear programming by focusing on unconstrained
NLPs. If S ⊆ Rn and the objective function f : S → R, then the general form
of such a problem is given by

minimize (or maximize) f (x), where x ∈ S. (6.7)

We shall later discover that constrained NLPs are solved using a method that
involves cleverly converting them to an unconstrained problem of the form
(6.7). For unconstrained NLPs, our investigation follows a line of reasoning
similar to that from a single-variable calculus course. In this section we de-
rive necessary conditions for a feasible point to be an optimal solution. This
step will be the easy part. The more challenging task, which is addressed in
Sections 6.3 and 6.4, is to establish sufficient conditions.

6.2.1 Differentiability

Deriving necessary conditions begins with stating a clear definition of differ-
entiability. Throughout subsequent discussions, we let ‖x‖ denote the usual
Euclidean vector norm in Rn.

Definition 6.2.1. Suppose that S ⊆ Rn and that f : S → R. We say that
the function f is differentiable at x0 in S if and only if there exists a vector
depending upon f and x0 , called the gradient of f at x0, written ∇ f (x0), and
a scalar function R(x0; x) dependent upon x0 and defined for all x in S, such
that

f (x) = f (x0) + ∇ f (x0)t(x − x0) + ‖x − x0‖R(x0; x), (6.8)

for all x in S and lim
x→x0

R(x0; x) = 0.

Here are some important facts to keep in mind regarding this definition.

1. Since∇ f (x0) is a column vector, its transpose is a row vector inRn. Thus,
∇ f (x0)t(x − x0) is a scalar, as are the remaining three terms in (6.8).

2. Equation (6.8), due to the presence of the limit, implicitly assumes that
f is defined at inputs sufficiently close to x0. Consequently, there must
exist a small neighborhood, or open disk, about x0 that is contained in
S. A set S ⊆ Rn in which every point has an open disk about it contained
in S, is said to be open.

3. If the last term is discarded from (6.8), we obtain the function

T(x) = f (x0) + ∇ f (x0)t(x − x0), (6.9)

6.2. Differentiability and a Necessary First-Order Condition 193

the linearization, or linear approximation of f , based at x0, which is
analogous to the tangent line formula from calculus. Thus,
‖x− x0‖R(x0; x) is an error term in this approximation, and the condition
that lim

x→x0

R(x0; x) = 0 indicates how quickly this error term decays to

zero as x→ x0.

An elementary fact, whose proof we omit, is that the components of the
gradient consist of the first-order partial derivatives of f . That is,

∇ f (x) =

∂ f

∂x1
∂ f

∂x2

...
∂ f

∂xn

, (6.10)

where x =

x1

x2

...
xn

. This result is easily proven using (6.8). If each partial deriva-

tive,
∂ f

∂xi
, where 1 ≤ i ≤ n, is continuous on S, we say that∇ f (x) is continuously

differentiable on S.

In Maple, the Gradient command, located in the VectorCalculus package
provides a means for computing the gradient. Its general form is given by
Gradient(expression,variable list). Here, variable list indicates the
variables with respect to which the gradient of expression is computed.
The output of the command is an expression given in terms of unit vectors
corresponding to each variable. Each unit vector takes the form evariable. A
simple example of the command’s usage is as follows:

> with(VectorCalculus):

> Gradient(x1ˆ2 +x1*x2ˆ3,[x1,x2]);

(2x1 + x3
2)ēx1 + 3x1x2

2ēx2

If f is a function, the unapply command can be used to define the correspond-
ing gradient function. For example, if f (x1, x2) = x2

1
+ x2

2, its gradient function
is constructed using the following syntax. Here we name this function Delf.

> with(VectorCalculus):

> f:=(x1,x2)->x1ˆ2+x2ˆ2;

f := (x1, x2)→ x2
1 + x2

2

194 Chapter 6. Algebraic Methods for Unconstrained Problems

> Delf:=unapply(Gradient(f(x1,x2),[x1,x2]),[x1,x2]):

> Delf(x1,x2);

2x1ex1 + 2x2ex2

Using Definition (6.2.1) to establish a function is differentiable at an input, x0,
can be somewhat tedious due to the fact we must show lim

x→x0

R(x0; x) = 0. The

following Waypoint illustrates one means of accomplishing this.

_ _

Waypoint 6.2.1. Consider the function f (x1, x2) = x1x2
2 − 2x2

1 + 3x2

along with x0 =

[
2
1

]
.

1. Calculate the linear approximation

T(x) = f (x0) + ∇ f (x0)t(x − x0),

where x =

[
x1

x2

]
. Use your result to determine an explicit repre-

sentation, in terms of x1 and x2, for the remainder term, R(x0; x).

2. Now express R(x0; x) in polar form as a function of r > 0 and
θ, where x1 = 2 + r cos(θ) and x2 = 1 + r sin(θ). Show that
|R(x0; x)| ≤ C · r, where C is a constant. Since r = ‖x − x0‖, this
inequality proves that lim

x→x0

R(x0; x) = 0.

_ _

6.2.2 Necessary Conditions for Local Maxima or Minima

In the linear setting, we saw that for any LP, one of four possible outcomes
must occur: the LP has a unique solution, has infinitely many solutions, is
infeasible, or is unbounded. For the general unconstrained NLP (6.7), other
cases are possible, e.g., exactly two solutions. For this reason, we must exercise
great care when defining the concept of maximum and minimum objective
value in the nonlinear setting.

Definition 6.2.2. Suppose S ⊆ Rn and f : S → R. We say that x0 is a local
minimum of f if there is a sufficiently small ǫ > 0 such that

f (x0) ≤ f (x) for all x in S satisfying ‖x − x0‖ < ǫ.

If in fact f (x0) ≤ f (x) for all x in S, we say that x = x0 is a global minimum of f
on S.

6.2. Differentiability and a Necessary First-Order Condition 195

Naturally, if the inequalities are reversed, “minimum” is replaced by “max-
imum.” The term strict is also frequently added to describe situations when
inequalities are strict. For example, to say that x = x0 is a strict global minimum
means f (x0) < f (x) for all x in S with x , x0. Local optimal solution refers to
either a local minimum or maximum when the context of the appropriate
term is clear. Global optimal solution is defined similarly.

A function can have many local maxima and/or minima, and many inputs
can share the distinction of being the global maximum (or minimum).

When n = 1, the gradient is nothing more than the derivative of a func-
tion of one variable. Recall that in the single-variable setting, the first step
towards maximizing or minimizing a differentiable function involves deter-
mining roots of the derivative, which we denote as the critical points. The
same principle, as formally stated by Theorem 6.2.1, applies to the general
unconstrained NLP.

Theorem 6.2.1. Suppose S ⊆ Rn is an open set and that f : S→ R is differen-
tiable at x0. If f has a local minimum or maximum at x0, then ∇ f (x0) = 0.

Proof. The proof involves little more than applying the single-variable result
to each component of x0. Without loss of generality, assume f has a local

minimum at x0. Fix an arbitrary j, where 1 ≤ j ≤ n and write x0 =

x0,1

x0,2

...
x0, j

...
x0,n

. Define

f j to be the “cross-section” obtained by fixing all but the jth component of f .
In other words,

f j(x) = f

x0,1

...
x0, j−1

x
x0, j+1

...
x0,n

.

Observe that

f ′j (x0, j) =
[∇ f (x0)

]
j , (6.11)

the jth component of ∇ f (x0).

Since f has a local minimum at x0, the function f j has a local minimum at

196 Chapter 6. Algebraic Methods for Unconstrained Problems

x = x0, j, and therefore f ′j (x0, j) = 0 by the single-variable result. Because j was

arbitrary,
[∇ f (x0)

]
j = 0 for all 1 ≤ j ≤ n, implying ∇ f (x0) = 0. �

In future discussions, if S ⊆ Rn is open and f : S→ R, we will say x0 inRn is a
critical point of f if ∇ f (x0) is zero of undefined. Of course, if f is differentiable
on S and x0 is a critical point of f , then ∇ f (x0) = 0.

In the single-variable setting, a critical point need not be a local minimum
or maximum. The same can be said of the unconstrained NLP insofar as
Theorem 6.2.1 merely provides a necessary first-order condition, stated in terms
of the gradient. If ∇ f (x0) , 0, then x0 can be neither a local minimum nor
a local maximum. In subsequent sections we establish sufficient conditions,
which are analogous to the first- and second-derivative tests from the single-
variable setting and which are adequate to guarantee x0 is a local minimum
or maximum.

_ _

Waypoint 6.2.2. Suppose f (x1, x2) = x3
1 − 3x1x2

2. A surface plot of this
function, which is sometimes called a “monkey saddle,” is shown in
Figure 6.3.

1. Show that x0 = 0 is the only critical point of f .

2. Explain why this critical point is neither a local maximum nor
a local minimum.

_ _

6.2. Exercises Section 6.2 197

x1

x2

FIGURE 6.3: Surface plot of f (x1, x2) = x3
1 − 3x1x2

2.

Exercises Section 6.2

1. Compute the gradient of the ConPro objective function as a function of

x =

[
x1

x2

]
.

2. Use Definition 6.2.1 to show that f (x1, x2) = x3
1−2x1−x2 is differentiable

at x0 =

[
1
1

]
.

3. Suppose S ⊆ Rn, f : S → R and x0 belongs to the interior of S. If d is a
nonzero vector in Rn, we define the directional derivative of f at x0 in the
direction of d as

f ′d (x0) = lim
h→0+

f (x0 + hd) − f (x0)

h
, (6.12)

provided this limit exists.

(a) Show that if f is differentiable at x0, then the limit in (6.12) exists

198 Chapter 6. Algebraic Methods for Unconstrained Problems

and that
f ′d (x0) = ∇ f (x0)td.

(b) Show that the preceding quantity f ′d (x0) depends only upon the
direction of d, not its magnitude. Hence, d may always be assigned
a unit vector value.

(c) For the ConPro objective function f , determine the directional
derivative of f in the direction of the origin at (x1, x2) = (10, 20).

4. Suppose S ⊆ Rn, f : S → R, and f is differentiable at x1 in S. Fix x2 in
S. (Note: The differentiability assumption implies x1 + hx2 also belongs
to S for h sufficiently close to zero.) Show that φ(h) = f (x1 + hx2) is
differentiable at h = 0 and satisfies

φ′(0) = ∇ f (x1)tx2.

6.3. Convexity and a Sufficient First-Order Condition 199

6.3 Convexity and a Sufficient First-Order Condition

In the single-variable setting, the concavity of a function near a critical point
conveys useful information for classifying the critical point as a local maxi-
mum or minimum. A simple example is given by

f (x) = |x| 32 ,

whose graph is shown in Figure 6.4.

0

0.2

0.4

0.6

0.8

1

–1 1

x

FIGURE 6.4: Graph of f (x) = |x| 32 .

This function is differentiable at the origin, where f ′(0) = 0. However, f ′′(0)
does not exist so that the second derivative test cannot be used to classify
x = 0 as a minimum. Clearly though, the concavity of the graph indicates this
critical point is a minimum.

6.3.1 Convexity

The preceding example illustrates how, in the single-variable setting, concav-
ity still plays a role in classifying a critical point, even though the function
may not be twice-differentiable there. As we shall discover, this principle also
applies to the general unconstrained NLP. However, instead of using phrases
such as “concave up” and “concave down” to describe the behavior of a func-
tion, we will instead use the terms convex and concave. Before defining these
terms in the context of functions, we first define convexity for sets.

Definition 6.3.1. Suppose that S ⊆ Rn. We say that S is convex if and only
if for any x1 and x2 in S and for any scalar t ∈ [0, 1], the linear combination
tx1 + (1 − t)x2 also belongs to S.

200 Chapter 6. Algebraic Methods for Unconstrained Problems

Such a linear combination, tx1 + (1 − t)x2, in which weights are nonnegative
and sum to unity, is known as a convex combination of x1 and x2. Thus, S is
convex if, given two arbitrary points, x1 and x2 in S, any convex combination
of the two points is again in S. If S is contained inR2 orR3, this simply means
that if x1 and x2 belong to S, then so does the line segment connecting them.

We now use convexity of sets to define convexity for functions.

Definition 6.3.2. Suppose that S ⊆ Rn is convex and that f : S → R. We say
that the function f is convex on the set S if and only if for every x1 and x2 in S
and every t ∈ [0, 1],

f (tx1 + (1 − t)x2) ≤ t f (x1) + (1 − t) f (x2). (6.13)

Stated another way: “The function evaluated at a convex combination of
inputs is bounded by the corresponding convex combination of function
outputs.” If, in the preceding inequality, the direction of the inequality is
reversed, we say that f is concave.

Observe that the requirement S be convex is needed in order to guarantee
that tx1+ (1− t)x2 belongs to S, thereby making f (tx1 + (1 − t)x2) well-defined.
Clearly f is concave if and only if − f is convex. When strict inequality holds
for every of x1 , x2 in S and all t in the open interval (0, 1), we use the
terms strictly convex or strictly concave on S. If, for fixed x1 in S, the preceding
inequality holds for every x2 in S and all t ∈ [0, 1], we say that f is convex at
x1. Note that if f is convex on S, then it is convex at each x1 in S.

In the single-variable setting, we recall using the terms “concave up” and
“concave down.” In the language of Definition 6.3.2, these merely correspond
to “convex” and “concave,” respectively.

Convexity has a very simple geometric interpretation in terms of the graph
of f . A function is convex on S if and only if given any two distinct inputs x1

and x2 in S, the output of f at any convex combination of x1 and x2, denoted
x = tx1 + (1 − t)x2, where 0 ≤ t ≤ 1, must fall on or below the line segment, or
chord, connecting the the points

(
x1, f (x1)

)
and

(
x2, f (x2)

)
. (For strict convexity

“on or below” is replaced by “strictly below.”) Figure 6.5 illustrates this
geometric interpretation for the paraboloid function f : R2 → R2 given by
f (x1, x2) = x2

1 + x2
2.

Each of the following functions is convex on its domain:

1. The absolute value function, f (x) = |x|.

2. The function f (x) = |x| 32 .

3. More generally, the function f (x) = |x|p, where p ≥ 1.

6.3. Convexity and a Sufficient First-Order Condition 201

–2
–1

0
1

2 –2

–1

0

1

2

0

2

4

6

8

x1

x2

FIGURE 6.5: The paraboloid f (x1, x2) = x2
1 + x2

2, together with one chord
illustrating notion of convexity.

4. Any quadratic function, f (x) = ax2 + bx + c, where a, b, and c are real
numbers and a ≥ 0.

5. The Euclidean norm function, f : Rn → R defined as f (x) = ‖x‖.

6. Any affine transformation, f : Rn → R, defined as f (x) = atx + b, where a
is a fixed vector in Rn and b a fixed real number. (This function is both
convex and concave.)

6.3.2 Testing for Convexity

The example f (x) = |x| 32 shown in Figure 6.4 illustrates how a function can
be differentiable, but not twice-differentiable, on its entire domain and still
be convex. From the graphical perspective, we can visualize this convexity
not only in terms of the preceding discussion involving chords but also by
noting that the tangent line to f at any input, which requires only the first
derivative to compute, lies completely below the graph of f . Theorem 6.3.1
uses the gradient and corresponding linearization introduced in Definition
6.2.1 to generalize this result to higher dimensions.

Theorem 6.3.1. Suppose S ⊆ Rn is convex and that f : S→ R is differentiable
at each point in S. Then f is convex on S if and only if for every x0 in S,

f (x) ≥ f (x0) + ∇ f (x0)t(x − x0) for all x ∈ S. (6.14)

Proof. Assume first that f is convex on S, let x0 and x in S, and define d = x−x0.
By Exercise 3 from Section 6.2, the differentiability of f implies the existence

202 Chapter 6. Algebraic Methods for Unconstrained Problems

of its directional derivatives at x0. Using the two equivalent formulations of
this quantity, we have

∇ f (x0)t(x − x0) = ∇ f (x0)td

= lim
h→0+

f (x0 + hd) − f (x0)

h

= lim
h→0+

f (h(x0 + d) + (1 − h)x0) − f (x0)

h
. (6.15)

Since f is convex,

f (h(x0 + d) + (1 − h)x0) − f (x0) ≤ h f (x0 + d) + (1 − h) f (x0) − f (x0)

= h f (x0 + d) − h f (x0)

= h
(
f (x) − f (x0)

)
. (6.16)

Substituting the result from (6.16) into (6.15) leads to (6.14), which completes
the first half of the proof.

For the reverse implication, choose x1 and x2 in S and t ∈ [0, 1] and assume
(6.14) holds. Since S is a convex set, x0 = tx1+ (1− t)x2 belongs to S. Now apply
inequality (6.14) twice, first with x = x1, and then with x = x2. The results,

f (x1) ≥ f (x0) + ∇ f (x0)t(x1 − x0)

f (x2) ≥ f (x0) + ∇ f (x0)t(x2 − x0),

may then be multiplied by the nonnegative quantities t and 1− t, respectively,
and added together. The resulting inequality simplifies to become

t f (x1) + (1 − t) f (x2) ≥ f (x0) = f (tx1 + (1 − t)x2).

Since x1 and x2 were arbitrary in S and t was arbitrary in [0, 1], f is convex on
S by Definition 6.3.2. This completes the proof of the theorem. �

The preceding proof is easily modified to show that f is convex at x0 if and
only if

f (x) ≥ f (x0) + ∇ f (x0)t(x − x0) for all x ∈ S.

Furthermore, the theorem remains valid if throughout the hypothesis “con-
vex” is replaced by “strictly convex” provided that in (6.14), the inequality is
strict and x , x0.

Theorem 6.3.1 provides one means of establishing a function is convex on a
set S that bypasses using the definition. Namely, choose an arbitrary input x0

in S. Form the linear approximation of f based at x0:

T(x) = f (x0) + ∇ f (x0)t(x − x0).

6.3. Convexity and a Sufficient First-Order Condition 203

Then compute the difference f (x) − T(x), and establish that this quantity is
nonnegative, regardless of the choices of x and x0 in S.

For example, if f (x1, x2) = x2
1 + x2

2 and x0 =

[
x0,1

x0,2

]
, then ∇ f (x) =

[
2x1

2x2

]
and the

linear approximation, or tangent plane, is given by

T(x1, x2) = (x2
0,1 + x2

0,2) +
[
2x0,1, 2x0,2

]
[
x1 − x0,1

x2 − x0,2

]

= x2
0,1 + x2

0,2 + 2x0,1(x1 − x0,1) + 2x0,2(x2 − x0,2)

= −x2
0,1 − x2

0,2 + 2x1x0,1 + 2x2x0,2.

Thus

f (x1, x2) − T(x1, x2) = x2
1 + x2

2 −
(
−x2

0,1 − x2
0,2 + 2x1x0,1 + 2x2x0,2

)

= (x1 − x0,1)2 + (x2 − x0,2)2.

Since the difference f − T is nonnegative for all choices of x and x0 in R2, we
conclude that f is convex on R2. Figure 6.6 illustrates the nonnegativity of
f −T in that the tangent plane to the surface at an arbitrary point lies beneath
the surface.

Unfortunately, the preceding example is an elementary one, and Theorem
6.3.1, by itself, is not overly useful for establishing convexity. Fortunately,
when f happens to be twice-differentiable on S, a concept we formally define
in Section 6.4, there exists a much simpler means for performing this task.

6.3.3 Convexity and The Global Optimal Solutions Theorem

Any discussion of convexity is incomplete without citing one of the most
important theorems in nonlinear programming, both in the constrained and
unconstrained settings. Commonly known as The Global Optimal Solutions
Theorem, it provides conditions under which a local minimum of an uncon-
strained NLP is guaranteed to be a global minimum.

Theorem 6.3.2. Assume S ⊆ Rn is nonempty and convex and that f : S→ R
is convex on S. Suppose x0 is a local minimum of f on S. Then x0 is a global
minimum of f on S. If f is strictly convex on S or if x0 is a strict local minimum,
then x0 is a unique global minimum.

Remark: Clearly a similar result holds if throughout this theorem’s statement
we replace “convex” with “concave,” “minimum” with “maximum,” and
“strictly convex” with “strictly concave.”

Proof. Assume first that f has a local minimum at x0. By Definition (6.2.2),

204 Chapter 6. Algebraic Methods for Unconstrained Problems

x1

x2

FIGURE 6.6: The paraboloid f (x1, x2) = x2
1+x2

2, together with the linearization,
or tangent plane, at an arbitrary point.

there must exist a sufficiently small positive ǫ such that

f (x0) ≤ f (x) for all x in S satisfying ‖x − x0‖ < ǫ. (6.17)

If x0 is not a global minimum of f on S, then there must exist in S some x⋆
satisfying f (x⋆) < f (x0). Now consider a convex combination of x0 and x⋆,
denoted tx⋆ + (1 − t)x0, where 0 ≤ t ≤ 1. Note that this input belongs to S
since this set is convex. By the convexity of the function f ,

f
(
tx⋆ + (1 − t)x0

) ≤ t f (x⋆) + (1 − t) f (x0) (6.18)

< t f (x0) + (1 − t) f (x0)

= f (x0).

This inequality is valid for all 0 ≤ t ≤ 1. Thus, by choosing t0 sufficiently close
to zero, x̃ = t0x⋆ + (1 − t0)x0 satisfies both f (x̃) < f (x0) and ‖x̃ − x0‖ < ǫ. But
condition (6.17) forces f (x0) ≤ f (x̃), and we attain a contradiction. Thus, x0

must be a global minimum of f .

Now assume that x0 is a strict local minimum, implying that f (x0) < f (x) in
(6.17). Then x0 is a global minimum of f on S by the preceding result. To
show it is unique with this property, we assume that x⋆ is a second global

6.3. Convexity and a Sufficient First-Order Condition 205

minimum so that f (x⋆) = f (x0). By the convexity of f again, for all 0 ≤ t ≤ 1,

f
(
tx⋆ + (1 − t)x0

) ≤ t f (x⋆) + (1 − t) f (x0) (6.19)

= f (x0).

This result is valid for all 0 ≤ t ≤ 1. If t0 is positive and sufficiently close to
zero, x̃ = t0x⋆+(1−t0)x0 is within ǫ units of x0, where ǫ is given in (6.17). From
(6.17) it follows that f (x0) ≤ f (x̃). At the same time, (6.19) dictates f (x̃) ≤ f (x0),
from which it follows that these two quantities are equal. Hence, x0 is not a
strict local minimum of f , and therefore x0 is the unique global minimum of
f on S.

The case when f is strictly convex is similar and is as an exercise. This com-
pletes the proof. �

6.3.4 Solving the Unconstrained NLP for Differentiable, Convex
Functions

Theorem 6.3.2 dictates that for a convex function, the distinction between local
and global minima is not necessary. Instead, we may speak simply of global
minima and, if the function is strictly convex, the unique global minimum.
For differentiable, convex functions, finding these minima is accomplished
simply by finding roots of the gradient. Theorem 6.3.3 provides a formal
statement of this fact. We omit its proof, which can be found in other sources
[2].

Theorem 6.3.3. Assume S ⊆ Rn is nonempty and convex and that f : S→ R
is convex on S and differentiable everywhere. Then x0 is the minimum of f
on S if and only if ∇ f (x0) = 0.

With the aid of Theorem 6.3.3, we are on the verge of determining how to
solve unconstrained NLPs such as the unconstrained version of the ConPro
Manufacturing Company NLP given in Section 6.1:

maximize f (x1, x2) = 1400x
1
2

1
x

1
3

2
− 350x1 − 200x2,

where x =

[
x1

x2

]
∈ S = R2

+ = {(x1, x2) | x1, x2 > 0} . (6.20)

Recall in this example that x1 denotes number of units capital, x2 number of
units labor, and f is profit. A surface plot of f is shown in Figure 6.7.

Straightforward calculations establish f is differentiable on S and

∇ f (x) =

700x
1
3
2√

x1
− 350

1400
√

x1

3x
2
3
2

− 200

. (6.21)

206 Chapter 6. Algebraic Methods for Unconstrained Problems

50

150
50

150

–10000

0

10000

x1 x2

f (x1, x2)

(0, 0)

FIGURE 6.7: Surface plot of ConPro objective function.

Setting ∇ f (x0) = 0 and solving for x0 yields

x0 =

[
784/9

2744/27

]
≈

[
87.11

101.63

]
. (6.22)

Our objective is to maximize f on S, which is identical to minimizing − f . By
Theorem 6.3.3, x0 in (6.22) is the global maximum provided we can establish
that − f is convex on S, i.e., f is concave on S. Figure 6.7 suggests that this is
the case.

However, using Theorem 6.3.1 to formally verify this fact is extremely chal-
lenging, as it requires us to prove that T − f is nonnegative on S, where T is
the tangent plane to f at an arbitrary point of S. Fortunately, in Section 6.4 we
develop a much simpler means for establishing f is concave, one analogous
to the single-variable second derivative test. Before starting that discussion,
however, we investigate how convexity arises in the context of regression.

6.3.5 Multiple Linear Regression

Suppose we have a sequence of data pairs,

(
x1, y1

)
,
(
x2, y2

)
, . . . ,

(
xm, ym

)
, (6.23)

where xi belongs toRn and yi belongs toR for each 1 ≤ i ≤ m. If we view each
xi as an independent variable quantity associated with a dependent variable
quantity, yi, multiple linear regression seeks to find a function, f : Rn → R,
that best fits this data and that takes the form f (x) = atx + b, where a belongs
to Rn and b belongs to R. To determine the function f that best fits the data
in the sense of least squares, we must find a and b that minimize the sum of

6.3. Convexity and a Sufficient First-Order Condition 207

squared-errors,

m∑

i=1

(
f (xi) − yi

)2
=

m∑

i=1

(
atxi + b − yi

)2
. (6.24)

Each term,
(
atxi + b − yi

)
, where 1 ≤ i ≤ m, is an affine transformation of a

and b and, hence, is convex. Results from exercises (2) and (3) of this section
demonstrate that the entire sum, (6.24), is then also convex. By Theorem 6.3.3,
it follows that (6.24) is minimized by computing the roots of its gradient in a
and b.

When n = 1, then f (x) = atx+b reduces to the standard regression line. If n > 1,
then derivation of f is known as multiple linear regression. A simple example
of such a problem is illustrated by the data in Table 6.1, which lists several
cigarette brands. To each brand, we associate its tar and nicotine amounts, its
mass, and the amount of produced carbon monoxide (CO).

TABLE 6.1: Cigarette data

Brand Tar (mg.) Nicotine (mg.) Mass (gm.) CO (mg.)
Alpine 14.1 0.86 0.9853 13.6
Benson and Hedges 16 1.06 1.0938 16.6
Bull Durham 29.8 2.03 1.165 23.5
Camel Lights 8 0.67 0.928 10.2
Carlton 4.1 0.4 0.9462 5.4
Chesterfield 15 1.04 0.8885 15
Golden Lights 8.8 0.76 1.0267 9
Kent 12.4 0.95 0.9225 12.3
Kool 16.6 1.12 0.9372 16.3
L and M 14.9 1.02 0.8858 15.4
Lark Lights 13.7 1.01 0.9643 13
Marlboro 15.1 0.9 0.9316 14.4
Merit 7.8 0.57 0.9705 10
Multi Filter 11.4 0.78 1.124 10.2
Newport Lights 9 0.74 0.8517 9.5
Now 1 0.13 0.7851 1.5
Old Gold 17 1.26 0.9186 18.5
Pall Mall Light 12.8 1.08 1.0395 12.6
Raleigh 15.8 0.96 0.9573 17.5
Salem Ultra 4.5 0.42 0.9106 4.9
Tareyton 14.5 1.01 1.007 15.9
TRUE 7.3 0.61 0.9806 8.5
Viceroy Rich Light 8.6 0.69 0.9693 10.6
Virginia Slims 15.2 1.02 0.9496 13.9
Winston Lights 12 0.82 1.1184 14.9

208 Chapter 6. Algebraic Methods for Unconstrained Problems

In many cases, data such as that in Table 6.1 is given in spreadsheet format.
Maple’s ExcelToolspackage provides a convenient means for importing Ex-
cel spreadsheet data into Maple array structures. Once the package is loaded,
a range of Excel cells is imported as an array using a command of the form

Import("C:UsersDocumentsCigaretteData.xls", "Sheet1", "A1:A25").

Observe that this command indicates the directory of the Excel file, the file’s
name, the name of the worksheet in the file, and the cell range. Assuming
that the entries from (6.1) are located in the first rows 1-25 and columns 1-4
of the first sheet of the file CigaretteData.xls, we can read the entries into four
vectors as follows:

> restart: with(ExcelTools): with(Statistics): with(VectorCalculus):
with(LinearAlgebra):

> tar := convert(Import("C:\\Users\\Documents\\CigaretteData.xls",
"Sheet1", "A1:A25"), Vector):

> nicotine := convert(Import("C:\\Users
Documents\\CigaretteData.xls", "Sheet1", "B1:B25"), Vector):

> mass := convert(Import("C:\\Users\\Documents\\CigaretteData.xls",
"Sheet1", "C1:C25"), Vector):

> CO := convert(Import("C:\\Users\\Documents\\CigaretteData.xls",
"Sheet1", "D1:D25"), Vector):

Here we have converted the arrays to vectors through use of the convert
command. Doing so allows us to access entries in each vector using a single
index. Now we can use this data to determine the linear function of best fit
as follows:

> x := Matrix(3, 1, [x1, x2, x3]): # Independent variable vector.
> a := Matrix(3, 1, [a1, a2, a3]): # Unknown regression coefficients.
> f:=unapply((Transpose(a).x)[1,1]+b,[x1,x2,x3]):
Define linear regression function.

> S:=add((f(tar[i],nicotine[i],mass[i])-CO[i])ˆ2,i=1..25):
Sum of squared-errors.

> DelS:=Gradient(S,[a1,a2,a3,b]): # Gradient of S.
> fsolve({DelS[1]=0,DelS[2]=0,DelS[3]=0,DelS[4]=0},{a1,a2,a3,b});
Determine critical point of S

a1 = .96257, a2 = −2.63167, a3 = −.13048, b = 3.20221

Thus the linear function that best predicts carbon monoxide output as a
function of tar, nicotine, and cigarette mass, based upon the information in
Table 6.1, is given by

f (x) = atx + b

= .96257x1 − 2.63167x2 − .13048x3 + 3.20221

6.3. Exercises Section 6.3 209

If we append to the preceding worksheet the appropriate commands, we can
determine the coefficient of determination, or “R2 value.” This quantity lies be-
tween 0 and 1 and measures the proportion of variation of the data accounted
for by the function f . If the data pairs used for the regression are given by{
(x1, y1), (x2, y2), . . . , (xm, ym)

}
and if y denotes the mean of {y1, y2, . . . , ym}, this

proportion equals ∑m
k=1

(
f (xk) − yk

)2

∑m
k=1

(
y − yk

)2
. (6.25)

The following commands demonstrate a strong goodness-of-fit:

> f:=(x1,x2,x3)->.96257*x1-2.63167*x2-.13048*x3+3.20221:# Enter
best-fit function.

> CObar:=Mean([seq(CO[i],i=1..25)]); # Compute mean carbon monoxide
value.

CObar := 12.528

> Rsquared:=add((f(tar[i],nicotine[i],mass[i])-CObar)ˆ,i=1..25)/
add((CObar-CO[i])ˆ,i=1..25);

.91859

Exercises Section 6.3

1. Show that if S1 and S2 are each convex sets in Rn, then S1 ∩ S2 is also
convex.

2. Use Definition 6.3.2 to show that each of the following functions is
convex on its given domain.

(a) The absolute value function, f (x) = |x|. (Hint: Use the triangle
inequality.)

(b) Any quadratic function, f (x) = ax2 + bx + c, where a, b, and c are
real numbers and a ≥ 0.

(c) The Euclidean norm function, f : Rn → R defined as f (x) = ‖x‖.

3. Show that the affine transformation, f : Rn → R, defined as f (x) = atx+b,
for some fixed vector, a, in Rn and fixed real number, b, is both convex
and concave on Rn.

4. Show that f (x) = x4 is strictly convex on R. (Hint: Use Theorem 6.3.1.)

210 Chapter 6. Algebraic Methods for Unconstrained Problems

5. Suppose that f (x1, x2) = 2x2
1x2 + x2

1x2
2 − 4x1x2 − 2x1x2

2. Show that f is
neither convex nor concave on R2. (Hint: First fix x1, say x1 = 1, and
consider the graph of f (1, x2). Then fix x2 = 1 and consider the graph of
f (x1, 1).)

6. Suppose f : S → R and g : S → R are both convex. Show that α f + βg
is then convex on S for any nonnegative values of α and β.

7. Suppose S ⊆ Rn and that f : S → R is a convex function. If ψ : R → R
is convex on f (S), show that the composite, ψ ◦ f , is convex on S.

8. Suppose f : Rn → R is convex and differentiable on Rn, A is an n-by-n
matrix, and b a vector in Rn. Define φ : Rn → R by φ(x) = f (Ax + b).
Show thatφ is convex onRn and determine a formula for∇φ(x) in terms
of ∇ f .

9. Suppose that S ⊆ Rn is convex and that f : S→ R is a convex function.
For fixed y ∈ R, we define the corresponding lower-level set as

f−1(y) =
{
x | x ∈ S and f (x) ≤ y

}
. (6.26)

Prove that f−1(y) is a convex set for every y ∈ R.

10. Suppose that the constraint functions g1, g2, . . . , gm in the general NLP
(6.1) are all convex. Show that the feasible region of the NLP is then a
convex set. (Hint: Combine the result from the previous exercise with
that of Exercise 1.)

11. The Body Fat Index (BFI) is one means of measuring an individual’s
fitness. One method of computing this value is Brozek’s formula, which
defines

BFI =
457

ρ
− 414.2,

where ρ denotes the body density in units of kilograms per liter. Un-
fortunately, an accurate measurement of ρ can only be accomplished
through a process known as hydrostatic weighing, which requires
recording an individual’s weight while under water, with all air ex-
pelled from his or her lungs. In an effort to devise less time-consuming
means for estimating BFI, researchers have collected data that suggests
a linear relationship between BFI and various body measurements [38].
Table 6.2 lists the weight, height, and various body measurements for
ten individuals. The last column indicates the BFI for these same in-
dividuals, as determined by the process of hydrostatic weighing and
Brozek’s formula.

Let x denote a vector in R5 that records a person’s weight, height,
abdomen circumference, wrist circumference, and neck circumference.

6.3. Exercises Section 6.3 211

Use multiple linear regression to find the linear function f : Rn →
R, given by f (x) = atx, which best fits the given data, in the sense
of least-squares, and can be used to predict an individual’s body fat
index, based upon the five obtained measurements types. Calculate the
corresponding coefficient of determination.

TABLE 6.2: Body measurement data

Weight (lb.) Height (in.) Abdomen (cm.) Wrist (cm.) Neck (cm.) BFI
154.25 67.75 85.2 17.1 36.2 12.6
173.25 72.25 83 18.2 38.5 6.9

154 66.25 87.9 16.6 34 24.6
184.75 72.25 86.4 18.2 37.4 10.9
184.25 71.25 100 17.7 34.4 27.8
210.25 74.75 94.4 18.8 39 20.6

181 69.75 90.7 17.7 36.4 19
176 72.5 88.5 18.8 37.8 12.8
191 74 82.5 18.2 38.1 5.1

198.25 73.5 88.6 19.2 42.1 12

212 Chapter 6. Algebraic Methods for Unconstrained Problems

6.4 Sufficient Conditions for Local and Global Optimal So-
lutions

The second derivative test in calculus is based upon the following argument. If
a function f is twice-differentiable at x0, then the quadratic Taylor polynomial
approximation of f at x0 is given by

P2(x) = f (x0) + f ′(x0)(x − x0) +
f ′′(x0)

2
(x − x0)2. (6.27)

When f ′(x0) = 0,

f (x) ≈ f (x0) +
f ′′(x0)

2
(x − x0)2 for x ≈ x0. (6.28)

The sign of f ′′(x0) indicates whether locally, near x0, the graph of f is parabolic
opening up, indicating x0 is a local minimum, or parabolic opening down,
indicating x0 is a local maximum. Of course, these two cases correspond to
the graph of f being convex or concave, respectively at x0. If f ′′(x0) = 0,
no conclusion may be made regarding the nature of the critical point; other
means of investigation are required.

6.4.1 Quadratic Forms

Since quadratic functions hold the key to the second derivative test, we inves-
tigate their higher-dimensional analog. In Rn, this type of function is known
as a quadratic form. Before defining this term we recall that a symmetric matrix,
A, is one satisfying At = A.

Definition 6.4.1. A quadratic form onRn is a function f : Rn → R represented
as

f (x) = xtAx,

for some n-by-n symmetric matrix A.

We usually refer to A as the matrix associated with the quadratic form. When
n = 1, this quantity is merely the coefficient a of the quadratic power function
f (x) = ax2.

It is because the matrix, A, associated with the quadratic form is symmetric
that the gradient of f takes a particularly simple form. Namely, ∇ f (x) = 2Ax.
We will use this fact frequently throughout subsequent discussions.

Figures 6.8-6.10 illustrate three different quadratic forms having domain R2.
Observe how their shapes differ.

6.4. Sufficient Conditions for Local and Global Optimal Solutions 213

1.

f (x1, x2) =

[
x1

x2

]t [
2 1
1 3

] [
x1

x2

]

=
[
x1 x2

] [2 1
1 3

] [
x1

x2

]

= 2x2
1 + 2x1x2 + 3x2

2 (6.29)

–6
–4

–2
0

2
4

6

–4
–2

0
2

4
60

20

40

60

80

100

120

140

160

180

x1
x2

f

FIGURE 6.8: The quadratic form f (x1, x2) = 2x2
1 + 2x1x2 + 3x2

2.

214 Chapter 6. Algebraic Methods for Unconstrained Problems

2.

f (x1, x2) =

[
x1

x2

]t [−2 1
1 −3

] [
x1

x2

]

= −2x2
1 + 2x1x2 − 3x2

2 (6.30)

–10

–5

0

5

10

–5

0

5

10–700

–600

–500

–400

–300

–200

–100

0

x1 x2

f

FIGURE 6.9: Quadratic form f (x1, x2) = −2x2
1 + 2x1x2 − 3x2

2.

3.

f (x1, x2) =

[
x1

x2

]t [
1 2
2 1

] [
x1

x2

]

= x2
1 + 4x1x2 + x2

2 (6.31)

6.4.2 Positive Definite Quadratic Forms

The examples shown in Figures 6.8-6.10 illustrate the three fundamental types
of quadratic forms having domain R2: paraboloids opening up, paraboloids
opening down, and saddle-shaped surfaces. This trichotomy extends to
higher dimensions and is described in the following manner.

Definition 6.4.2. A quadratic form f on Rn is positive definite if and only if

f (x) > 0 for every x , 0.

The quadratic form is negative definite if and only if

f (x) < 0 for every x , 0 or, equivalently, if − f is positive definite.

Finally, f is indefinite if f (x) is positive for some choices x and negative for
other choices.

6.4. Sufficient Conditions for Local and Global Optimal Solutions 215

–10 –5 0 5 10

0

10

–200

0

200

400

600

x1 x2

f

FIGURE 6.10: Quadratic form f (x1, x2) = x2
1 + 4x1x2 + x2

2.

Establishing whether a given quadratic form is positive definite, negative
definite, or indefinite using only Definition 6.4.2 can prove quite challenging.
Fortunately, an alternate means exists, one that capitalizes upon the fact
that every quadratic form is determined completely by a square symmetric
matrix. The following theorem, whose proof we omit but which can be found
in a variety of sources, uses eigenvalues as a tool for classifying quadratic
forms [15], [6]. Recall that an eigenvalue of an n-by-n matrix A is a scalar, λ,
satisfying Ax = λx for some nonzero vector x ∈ Rn. For a symmetric matrix,
all eigenvalues are real-valued. (See Appendix ??.)

Theorem 6.4.1. Suppose A is a symmetric n by n matrix having real-valued
entries and that
f : Rn → R is the quadratic form given by

f (x) = xtAx.

Then f is positive definite (resp. negative definite) if and only if all eigenvalues
of A are positive (resp. negative).

_ _

Waypoint 6.4.1. Determine the eigenvalues of the matrices associated
with the quadratic forms in Figures 6.8 and 6.9. Use your results to
classify each as positive definite or negative definite.

_ _

Theorem 6.4.1 is not complete in terms of classifying all quadratic forms. A
slight modification of Definition 6.4.2 avoids this problem. Namely, we relax

216 Chapter 6. Algebraic Methods for Unconstrained Problems

the condition of strict inequality and define the quadratic form f to be positive
semidefinite if and only if

f (x) ≥ 0 for every x , 0.

A modification of the statement of the preceding theorem classifies a quadratic
form as positive semidefinite if all eigenvalues are nonnegative. The notion of
negative semidefinite is defined analogously. Finally we say that the quadratic
form of f is indefinite if it is neither positive nor negative semidefinite, meaning
it has both positive and negative eigenvalues.

With one more additional tool, we shall discover how these three types of
quadratic forms hold the key for constructing our higher-dimensional version
of the second derivative test.

6.4.3 Second-order Differentiability and the Hessian Matrix

In Section 6.2, we defined first-order differentiability, which led to the concept
of linear approximations. Second-order differentiability is defined similarly.
However, while the gradient vector played the role of the first derivative, the
role of the second derivative is played by a square matrix.

Definition 6.4.3. Suppose that S ⊆ Rn and that f : S→ R is differentiable at
x0, which lies in the interior of S. We say that the function f is twice-differentiable
at x0, or is second-order differentiable at x0, if and only if there exists an n-by-n
matrix, H f (x0), called the Hessian matrix of f at x0, and a scalar function R,
depending upon x0 and x, such that

f (x) = f (x0) + ∇ f (x0)t(x − x0) +
1

2
(x − x0)tH f (x0)(x − x0)

+ ‖x − x0‖2R(x0; x), (6.32)

where lim
x→x0

R(x0; x) = 0.

In the same way that first-order differentiability forces the gradient vector to
be comprised of first-order partial derivatives, second-order differentiability
leads to a Hessian matrix consisting of second-order partial derivatives:

H f (x) =

∂2 f

∂x2
1

∂2 f

∂x1x2
. . .

∂2 f

∂x1xn

∂2 f

∂x2x1

∂2 f

∂x2
2

. . .
∂2 f

∂x2xn

...
...

. . .
...

∂2 f

∂xnx1

∂2 f

∂xnx2
. . .

∂2 f

∂x2
n

. (6.33)

Whenever referring to the Hessian, H f , we will assume that f has continuous

6.4. Sufficient Conditions for Local and Global Optimal Solutions 217

second-order partial derivatives on the set S, i.e., is f is continuously twice-
differentiable there. In this case, Clairaut’s Theorem implies equality of mixed

second-order partial derivatives:
∂2 f

∂xix j
=
∂2 f

∂x jxi
for all 1 ≤ i, j ≤ n, so that H f (x)

is a symmetric matrix and the right-hand side of (6.32) therefore contains a
quadratic form as one of its terms. Naturally we refer to the right-hand
without the remainder term, as the second-order approximation of f near x0.
It is analogous to the degree-two Taylor polynomial from the single-variable
setting. Finally, we note that Definitions 6.4.1 and 6.4.3 together imply that
the Hessian matrix of a quadratic form f (x) = xtAx equals 2A.

In Maple, the Hessian command, located in the VectorCalculus package
provides a means for computing the Hessian matrix. Its general form is given
by Hessian(expression,variable list). Here, variable list indicates
the variables with respect to which the Hessian of expression is computed.
The output of the command is a matrix. A simple example of the command’s
usage is as follows:

> with(VectorCalculus):

> Hessian(x1ˆ2 +x1*x2ˆ3,[x1,x2]);

[
2 3x2

2
3x2

2
6x1x2

]

If f is a function, the unapply command can be used to define the corre-
sponding Hessian function. For example, if f (x1, x2) = x2

1
+ x2

2
, its Hessian

matrix function is constructed using the following syntax. Here we name this
function Hf.

> with(VectorCalculus):

> f:=(x1,x2)->x1ˆ2 +x1*x2ˆ3,[x1,x2];

f := (x1, x2)→ x2
1 + x1x3

2 :

> Hf:=unapply(Hessian(f(x1,x2),[x1,x2]),[x1,x2]):

> Hf(x1,x2); [
2 3x2

2
3x2

2 6x1x2

]

218 Chapter 6. Algebraic Methods for Unconstrained Problems

_ _

Waypoint 6.4.2. For each of the following functions, determine a
general formula for the Hessian matrix, H f (x). Then, determine the
critical point, x0, of each function, and evaluate H f (x0).

1. The function f (x1, x2) = x1x2
2 − 2x2

1 + 3x2.

2. The objective function associated with the ConPro Manufacturing
Company. (Note: Results (6.21) and (6.22) from Section 6.3. may
prove useful.)

_ _

The Hessian is an extremely useful tool for classifying local optimal solutions
and also for establishing a function is convex on its domain. Theorem 6.4.2,
our long-desired “second derivative test,” addresses the first of these issues.

Before stating this theorem, we describe an important result from linear alge-
bra that we will utilize in its proof.

Definition 6.4.4. A square, invertible matrix, P, satisfying P−1 = Pt is said to
be an orthogonal matrix.

An orthogonal n-by-n matrix, P, has interesting properties. Among them are
the following:

• The column vectors of P are orthonormal, meaning that ut
iu j equals zero

for 1 ≤ i, j ≤ n such i , j and equals 1 if i = j.

• ‖Px‖ = ‖x‖ for any x in Rn.

• The matrix Pt is orthogonal as well.

Orthogonal matrices play an important role in matrix diagonalization. The
Spectral Theorem (Theorem B.7.1) states that any symmetric matrix, A, can
be expressed in the form

A = PDPt, (6.34)

where D is a diagonal matrix whose entries are the eigenvalues of A and P is
an orthogonal matrix whose columns consist of the eigenvectors of A. Further
discussion of orthogonal matrices can be found in a variety of sources [21],
[15].

We now state our main result.

Theorem 6.4.2. Assume S ⊆ Rn is a nonempty, open, convex set. Suppose
f : S → R is twice-differentiable at each point of S and that x0 is a critical
point of f belonging to S.

6.4. Sufficient Conditions for Local and Global Optimal Solutions 219

1. If f has a local minimum (resp. local maximum) at x0, then H f (x0) is
positive semidefinite (resp. negative semidefinite).

2. If H f (x0) is positive definite (resp. negative definite), then x0 is a strict
local minimum (resp. strict local maximum).

3. If H f (x0) is indefinite, then x0 is neither a maximum nor minimum. It is
termed a saddle point.

4. If H f (x0) is positive semidefinite or negative semidefinite, then no con-
clusion may be made as to the nature of the critical point x0. Further
analysis is required.

Proof. We will prove (1), (2), and (3); (4) will be left as an exercise.

Assume first that f has a local minimum at x0. Since f is twice-differentiable
and has a x0 is a critical point, we have for all x in S,

0 ≤ f (x) − f (x0) (6.35)

=
1

2
(x − x0)tH f (x0)(x − x0) + ‖x − x0‖2R(x0; x),

where R(x0; x)→ 0 as x→ x0.

Choose d arbitrary in Rn. Then for sufficiently small, positive h, x = x0 + hd
belongs to S. Substituting this value into (6.35), simplifying the result, and
dividing by h2, we arrive at

0 ≤ f (x) − f (x0)

h2
(6.36)

=
1

2
dtH f (x0)d + ‖d‖2R(x0; x0 + hd).

This result implies that

1

2
dtH f (x0)d + ‖d‖2R(x0; x0 + hd) ≥ 0 (6.37)

for all sufficiently small, positive h. Letting h→ 0, we arrive at dtH f (x0)d ≥ 0.
Since d was an arbitrary vector in Rn, H f (x0) is positive semidefinite by
definition. This completes the proof of (1).

Now assume that H f (x0) is positive definite. Since f is twice-differentiable at
x0 and ∇ f (x0) = 0, we have

f (x) = f (x0) +
1

2
(x − x0)tH f (x0)(x − x0) + ‖x − x0‖2R(x0; x), (6.38)

where lim
x→x0

R(x0; x) = 0. By (6.34), H f (x0) factors as

H f (x0) = PDPt. (6.39)

220 Chapter 6. Algebraic Methods for Unconstrained Problems

In this factorization D is a diagonal matrix having the eigenvalues of H f (x0) as
its entries, and P has column vectors equal to the corresponding orthonormal
eigenvectors of H f (x0). Since H f (x0) is positive definite, all its eigenvalues
are strictly positive. Listing the eigenvalues, λ1, λ2, . . . , λn, we define λ =
min {λi | 1 ≤ i ≤ n} and note that λ > 0.

We now prove
(x − x0)tH f (x0)(x − x0) ≥ λ‖x − x0‖2, (6.40)

a result, when combined with (6.38), leads to

f (x) − f (x0) ≥ ‖x − x0‖2
(
λ

2
+ R(x0; x)

)
.

Since λ > 0 and R(x0; x) → 0 as x → x0, we will then be able to conclude
that f (x)− f (x0) > 0 for all x sufficiently close to x0, which is precisely what it
means to say that x0 is a strict local minimum of f .

To establish (6.40), we first define

w =

w1

w2

...
wn

= Pt(x − x0). (6.41)

Since Pt is also orthogonal, ‖w‖ = ‖x − x0‖. We now use this fact to obtain the
desired lower bound in (6.40):

(x − x0)tH f (x0)(x − x0) = (x − x0)tPDPt(x − x0)

=
(
Pt(x − x0)

)t
DPt(x − x0)

= wtDw

= λ1w2
1 + λ2w2

2 + . . . + λnw2
n

≥ λ
(
w2

1 + w2
2 + . . . + w2

n

)

= λ‖w‖2

= λ‖x − x0‖2.

Thus, we have established (6.40) so that x0 is a local minimum and the proof
of (2) is complete.

If H f (x0) is indefinite, then there exist x+ and x− in S such that xt
+H f (x0)x+ > 0

and xt
−H f (x0)x− < 0. Define φ(h) = f (x0 + hx+). By the result from Exercise

4 of Section 6.2, along with a simple extension of this result to the second
derivative, φ is twice-differentiable in a neighborhood of the origin where it
satisfies

φ′(h) = ∇ f (x0 + hx+)t x+ and φ′′(h) = xt
+H f (x0 + hx+) x+.

6.4. Sufficient Conditions for Local and Global Optimal Solutions 221

Since φ′(0) = 0 and φ′′(0) > 0, φ has a local minimum of φ(0) = f (x0) at h = 0,
from which it follows that f cannot have a local maximum at x0. A similar
argument using x− establishes that f cannot have a local minimum at x0. This
completes the proof of (3). �

_ _

Waypoint 6.4.3. Use the Theorem 6.4.2 to classify, where possible,
all strict local maxima and minima of the functions corresponding
Figures 6.8-6.9.

_ _

While Theorem 6.4.2 is useful for determining local maxima and minima, it
cannot be used by itself to determine global optimal solutions of the uncon-
strained NLP in which we seek to minimize f (x), for x belonging to some
open, convex set S in Rn. The difficulty lies in making the transition from
“local” to “global.” Fortunately, the Global Optimal Solutions Theorem (The-
orem 6.3.2) helps us make this transition, provided we show f is convex on
S. This task appeared quite difficult in general at the end of Section 6.3. The
next result demonstrates that a more straightforward method exists, one that
requires showing H f (x0) is positive semidefinite for all x0 in S, not just at the
critical point.

Theorem 6.4.3. Assume S ⊆ Rn is nonempty, open, convex set. Suppose
f : S → R is twice-differentiable at each point of S. Then f is convex on S if
and only if H f (x0) is positive semidefinite for every x0 in S.

Proof. First assume f is convex on S and choose x0 in this set. To estab-
lish H f (x0) is positive semidefinite, we must show that for arbitrary x in S,
xtH f (x0)x ≥ 0.

Since S is open, for all h sufficiently close to 0, x0 + hx also belongs to S. Thus,
by Theorem 6.3.1,

f (x0 + hx) ≥ f (x0) + ∇ f (x0)t(hx). (6.42)

That f is twice-differentiable at x0 yields

f (x0+hx) = f (x0)+∇ f (x0)t(hx)+
1

2
(hx)tH f (x0)(hx)+‖hx‖2R (x0; x0 + hx) . (6.43)

The combination of (6.42) and (6.43) leads to

1

2
h2xtH f (x0)(x) + h2‖x‖2R (x0; x0 + hx) ≥ 0,

which is valid for all sufficiently small positive h. Dividing by h2, letting

222 Chapter 6. Algebraic Methods for Unconstrained Problems

h → 0, and utilizing the fact R(x; x0 + hx0) → 0, yields the desired inequality
xtH f (x0)x ≥ 0. This completes the first half of the proof.

For the reverse implication, we assume H f (x0) is positive semidefinite and
must establish that f is convex on S. Choose x0 and x in S and define
φ : [0, 1]→ R by

φ(h) = f ((1 − h)x0 + hx) .

Note that φ(0) = f (x0) and φ(1) = f (x). Since f is twice-differentiable on the
open set S,φ is twice-differentiable in an open set containing the entire closed
interval [0, 1]. By Taylor’s Theorem,

φ(1) = φ(0) + φ′(0) +
φ′′(ζ)

2
(6.44)

for some ζ in [0, 1]. Again using the result of Exercise 4 from 6.2, we have
φ′(0) = ∇ f (x0)t(x − x0). An analogous identity for φ′′, which we leave as an
exercise, is given by

φ′′(ζ) = (x − x0)tH f ((1 − ζ)x0 + ζx) (x − x0). (6.45)

Substituting this formula into (6.44) results in

f (x) = f (x0) + ∇ f (x0)t(x − x0) +
1

2
(x − x0)tH f ((1 − ζ)x0 + ζx) (x − x0).

Because H f ((1 − ζ)x0 + ζx) is positive semidefinite, it follows that

f (x) ≥ f (x0) + ∇ f (x0)t(x − x0).

By Theorem 6.3.1, f is convex. �

Theorem 6.4.3 and our previous results provides a framework for solving
unconstrained NLPs. Suppose S ⊆ Rn is an open convex set and that f : S→ R
is twice-differentiable at each point of S. Consider the general unconstrained
NLP

minimize f (x), where x ∈ S. (6.46)

The process of determining the global minimum is as follows:

1. Determine all critical points of f in S, that is, all solutions, x0, of∇ f (x0) =
0. Theorem 6.2.1 dictates that this condition must hold at the optimal
solution.

2. Evaluate the Hessian matrix H f (x) at each of the critical points from
(1) and determine which resulting matrices are positive definite. (Com-
puting eigenvalues is one method for accomplishing this.) Then apply
Theorem 6.4.2 to determine all local minima.

6.4. Sufficient Conditions for Local and Global Optimal Solutions 223

3. Now ascertain whether f is convex on all of S. If this holds, each local
minimum from (2) is a global minimum by the Global Optimal Solutions
Theorem (Theorem 6.3.2). To establish convexity of f on S, it suffices
to take the general formula for H f (x) from the previous step and prove
that it is positive semidefinite for all x in S. One means of doing so is
to compute the eigenvalues, which are expressions in x, and establish
they are all nonnegative.

4. If in (3), H f (x) is also positive definite for all x in S, then f is strictly
convex on S, implying there can only be one global minimum by the
Global Optimal Solutions Theorem.

The unconstrained ConPro Manufacturing Company NLP,

maximize f (x1, x2) = 1400x
1
2

1
x

1
3

2
− 350x1 − 200x2,

where x =

[
x1

x2

]
∈ S = R2

+ = {(x1, x2) | x1, x2 > 0} . (6.47)

illustrates this process. Here we seek to maximize so “negative semidefinite”
replaces “positive semidefinite” and “concave” replaces “convex” in the pre-
ceding outline of steps. Recall from Section 6.3, the single critical point of f is
given by

x0 =

[
784/9

2744/27

]
≈

[
87.11

101.63

]
.

The Hessian matrix H f (x) simplifies to

H f (x1, x2) =

−350x
1
3
2

x
3
2
1

700

3
√

x1x
2
3
2

700

3
√

x1x
2
3
2

−2800
√

x1

9x
5
3
2

. (6.48)

Computing the eigenvalues of H f (x1, x2) is a tedious task that is best left to
Maple. The resulting eigenvalues are then given by

−175

9

9x2
2
x1 + 8x3

1
±

√
81x4

2
x2

1
+ 64x6

1

x5/3
2

x5/2
1

. (6.49)

Clearly one of these eigenvalues is negative for all x =

[
x1

x2

]
in S. To establish

the other is negative on S, we must show that for such x,

9x2
2x1 + 8x3

1 −
√

81x4
2
x2

1
+ 64x6

1
> 0. (6.50)

224 Chapter 6. Algebraic Methods for Unconstrained Problems

_ _

Waypoint 6.4.4. Show that the preceding quantity is negative in S.

(Hint: First establish the general inequality
√

a + b < a+ b for a, b > 0.)

_ _

Since both eigenvalues are negative on S, H f (x) is negative definite on S so
that f is strictly concave. Thus, the unique global minimum is given by Thus

x0 =

[
784/9

2744/27

]
≈

[
87.11

101.63

]
.

Finally, we note that the Maple command IsDefinite provides a
shortcut means for determining whether a given square matrix is
positive- or negative-definite or semidefinite. Its general form consists
of IsDefinite(M,’query’=q), where M is a symmetric matrix and q
specifies the matrix form to be determined. Choices for q consist of
’positive definite’, ’positive semidefinite’, ’negative definite’,
’negative semidefinite’, and ’indefinite’. The returned value is true
or false; if the matrix has symbolic entries, the command returns conditions
on these entries for which q is satisfied.

6.4.4 Using Maple To Classify Critical Points for the Unconstrained
NLP

The following worksheet, Classifying Critical Points.mw, demonstrates how
various Maple commands are combined to determine and classify the critical
point of the unconstrained ConPro Manufacturing Company NLP.

> with(VectorCalculus):with(LinearAlgebra):
> f:=(x1,x2)->1400*x1ˆ(1/2)*x2ˆ(1/3)-350*x1-200*x2;
Enter function to maximized.

f := (x1, x2)→ 1400
√

x1x1/3
2
− 350x1 − 200x2

> Delf:=unapply(Gradient(f(x1,x2),[x1,x2]),[x1,x2]):
Create the gradient function of f.

> solve({Delf(x1,x2)[1]=0,Delf(x1,x2)[2]=0},{x1,x2});
Determine the critical point by solving a system of two equations

in x1 and x2. These are formed by setting each component of the

gradient of f equal to 0.

{x1 = 784/9, x2 = 2744/27}

> evalf(%);
Determine floating point approximation of critical point.

{x1 = 87.1111, x2 = 101.6296}

6.4. Sufficient Conditions for Local and Global Optimal Solutions 225

> subs(%,f(x1,x2));
Determine objective value at critical point.

10162.96296

> Hf:=Hessian(f(x1,x2),[x1,x2]);
Create a matrix, Hf, consisting of the Hessian of f.

H f =

−350

3√x2

x3/2
1

700
3

1√
x1x2/3

2

700
3

1√
x1x2/3

2

− 2800
9

√
x1

x5/3
2

> Eigenvalues(Hf);
Determine eigenvalues of Hf.

− 175
9

8x3
1
+9x1x2

2−
√

64x6
1
+81x2

1
x4

2

x5/3
2

x5/2
1

− 175
9

8x3
1
+9x1x2

2+
√

64x6
1
+81x2

1
x4

2

x5/3
2 x5/2

1

> IsDefinite(Hf,’query’=’negative semidefinite’);
Example illustrating use of IsDefinite command. Result demonstrates

that H is negative semidefinite on domain, x1>0,x2>0.

0 ≤ 490000

9x1x4/3
2

0 ≤ 350

9

8x2
1
+ 9x2

2

x3/2
1

x5/3
2

6.4.5 The Zero-Sum Matrix Game, Revisited

We end this section by revisiting the topic of matrix games from Section
4.1. Doing so will illustrate a connection between saddle points and duality
theory.

Recall from Section 4.1 Steve and Ed’s zero-sum matrix game involving the
3-by-3 payoffmatrix

A =

1 −1 2
2 4 −1
−2 0 2

 . (6.51)

In this game, at each play, Ed picks a column and, simultaneously, Steve
picks a row. The dollar amount ai, j in the resulting entry then goes to Ed if
it is positive and to Steve if it is negative. From Waypoint 4.1.3 we know
that the mixed strategy Nash equilibrium for the game yields Ed and Steve’s
equilibrium mixed strategies, x0 and y0, respectively, along with their corre-

sponding earnings. For Ed, x0 =

3/28
9/28
4/7

, which indicates he should choose

226 Chapter 6. Algebraic Methods for Unconstrained Problems

column one with probability 3
28 , column two with probability 9

28 , and col-

umn three with probability 4
7 . Similarly, Steve’s equilibrium mixed strategy

of y0 =
[
1/2 5/14 1/7

]
dictates he should choose rows one through three

with respective probabilities, 1
2 , 5

14 , and 1
7 . The game value corresponding to

these strategies equals 13
14 . It represents the average amount Ed wins (and Steve

loses) when each player follows his equilibrium mixed strategy. Because this
game value and the equilibrium strategies constitute a mixed strategy Nash
equilibrium, we know that Ed cannot increase his average earnings from 13

14
by deviating from his equilibrium mixed strategy while Steve continues to
follow his own. Likewise, we know that Steve cannot decrease his losses from
13
14 by deviating from his equilibrium mixed strategy while Ed continues to
follow his own.

In Section 4.1, we determined Ed’s equilibrium mixed strategy, x0, was the
solution of the following LP:

maximize z (6.52)

subject to

Ax ≥ ze

et · x = 1

x ≥ 0.

(Recall that e denotes a 3-by-1 vector of 1s.) Steve’s equilibrium mixed strat-
egy, y0, was the solution of the dual LP corresponding to LP (6.52):

minimize w (6.53)

subject to

ytA ≤ wet

et · y = 1

y ≥ 0.

(Note: Notation in this formulation of the dual LP differs slightly from that
used in Section 4.1.5. Here we assume that y is a column vector, as opposed
to a row vector, in R3.)

This zero-sum matrix game can also be described using results from this
section. Consider the matrix product ytAx. Since x1 + x2 + x3 = 1 and y1 + y2 +

y3 = 1, this product defines a function f : R4 → R as follows:

f (x1, x2, y1, y2) =

y1

y2

1 − y1 − y2

t

A

x1

x2

1 − x1 − x2

 . (6.54)

6.4. Exercises Section 6.4 227

_ _

Waypoint 6.4.5. Show that f in (6.54) has one critical point, a saddle
point, at

x1,0

x2,0

y1,0

y2,0

=

3/28
9/28
1/2

5/14

,

where f (x1,0, x2,0, y1,0, y2,0) =
13

14
. This demonstrates how the mixed

strategy Nash equilibrium of a zero-sum matrix game corresponds to
a saddle point of a single function, which is formed using the payoff
matrix and whose output at the saddle point is the game value. That
this outcome holds in general is a special case of classic result from
game theory, known as the von Neumann Minimax Theorem.

_ _

We conclude this section by noting that, while neither player can improve
his standing by unilaterally deviating from his equilibrium mixed strategy, it
is possible for both players to simultaneously deviate from their equilibrium
mixed strategies and for one or the other to benefit as a result. Exercise (8)
illustrates this phenomenon.

Exercises Section 6.4

1. Determine the quadratic approximation,

f (x) = f (x0) + ∇ f (x0)t(x − x0) +
1

2
(x − x0)tH f (x0)(x − x0)

for the function f (x1, x2) = e−(x2
1
+x2

2) at x0 =

[
.5
.5

]
. Plot this approximation

together with the function f .

2. Recall Pam’s Pentathlon Training Program, Exercise 2, from Section 6.1.
When stated as a maximization problem, the objective is represented
by the function f : S → R, where S = R3

+ = {(x1, x2, x3) | x1, x2, x3 ≥ 0}
and where

f (x1, x2, x3) = .11193(254− (180− .5x1 − x2 − x3))1.88

+ 56.0211(5.2+ .1x1)1.05.

In this formula, x1, x2, and x3 denote the number of hours each week

228 Chapter 6. Algebraic Methods for Unconstrained Problems

Pam devotes to weight lifting, distance running, and speed workouts.
The value of f (x1, x2, x3) represents the portion of Pam’s total pentathlon
score due to her performances in the 800 meter run and the shot put.

Show that the function f is strictly convex on S by establishing that its
Hessian is positive definite there. (Hint: Express the Hessian in the form
H f (x) = φ(x)A, where φ is a positive function defined on S and where A
is a positive definite matrix of numbers. Then each eigenvalue of H f (x)
is a product of φ(x) and an eigenvalue of A.)

3. Calculate all critical points of each of the following functions on its
stated domain S. Determine whether the function is convex, concave,
or neither on S and then classify each critical point as a local or global
minimum, local or global maximum, or saddle point.

(a) f (x1, x2) = x2
1 + x1x2 − x1 + 2x2

2 − 4x2 + 2, S = R2

(b) f (x1, x2) = x2
1 − 10x1x2 + 4x1 + 7x2

2 − 8x2 + 2, S = R2

(c) f (x1, x2) = −2x2
1 + 6x1x2 − 6x1 − 5x2

2 + 8x2 − 5, S = R2

(d) f (x1, x2) = x4
1 − 8x3

1 + 24x2
1 − 32x1 + 4x2

2 − 4x2, S = R2

(e) f (x1, x2) = sin(x1) cos(x2), S = {(x1, x2) | 0 < x1, x2 < π}

(f) f (x1, x2) = ln(1 + x2
1) +

1

2
x2

2, S = {(x1, x2) | −1 < x1 < 1}

(g) f (x1, x2) = e
−
(

x2
1
+x2

2
2

)

, S =
{
(x1, x2) | x2

1 + x2
2 < 1

}

4. Suppose that f : Rn → R is the general quadratic mapping defined by

f (x) =
1

2
xtAx − btx + c, (6.55)

where A is a nonsingular, n-by-n matrix, b is in Rn, and c is a real
number. Show that x = A−1b is the sole critical point of f and that
this critical point is a global minimum (resp. global maximum) if A is
positive definite (resp. negative definite). Use this result to determine

the global minimum of f in (6.55) when A =

[
2 1
1 3

]
and b =

[
−1
4

]
, and

c = 6.

5. The general equation of a plane in R3 is given by ntx = d, where n is

a fixed vector in R3 (the normal vector), x =

x1

x2

x3

, and d is a constant.

Determine a formula in terms of n for the point, x0, on this plane that is
closest to the origin. Then find the point on the plane x1 + 2x2 + 3x3 = 1
that is closest to the origin.

6.4. Exercises Section 6.4 229

6. Show that the function f : R2 → R given by f (x1, x2) = x4
1
+ x2

2 has
a critical point at the origin, which is a global minimum. Then verify
H f (0) is positive semidefinite. Then show that f (x1, x2) = −x4

1
+ x2

2
has

a critical point at the origin, which is a saddle point, and verify that
H f (0) is still positive semidefinite. This example illustrates how, in the
hypothesis of part (2) of Theorem 6.4.2, we may not replace “positive
definite” with “positive semidefinite.”

7. Give an example of a twice-differentiable function f : R2 → R having a
global minimum at x0 = 0 and for which zero is the only eigenvalue of
H f (x0). Then give an example of a twice-differentiable function
f : R2 → R having a global maximum at x0 = 0 and for which zero is
the only eigenvalue of H f (x0).

8. Consider the zero-sum matrix given involving the 2-by-2 payoffmatrix

A =

[
2 −3
−1 4

]
. (6.56)

Suppose player 1 chooses columns one and two with respective prob-
abilities, x1 and x2. Player 2 chooses rows one and two with respective
probabilities y1 and y2.

(a) Formulate the LP and dual LP, whose respective solutions indicate
each player’s optimal mixed strategy. Solve each of these LPs and
determine the corresponding game value.

(b) Confirm that the solution just obtained coincides with the saddle
point of the function

f (x1, y1) =

[
y1

1 − y1

]t

A

[
x1

1 − x1

]
.

(c) Sketch the set of points in the x1y1 plane that determine all possible
mixed strategies for the two players that yield the game value from
(a).

(d) Now sketch the set of points in the x1y1 plane that determine all
possible mixed strategies for the two players that yield a game
value that is 20% higher than that in (c).

9. Consider the zero-sum matrix game having the 2-by-2 payoffmatrix

A =

[
a b
c d

]
. (6.57)

Assume a+ d− (b+ c) , 0. Show that for the game to be fair, i.e., to have
a game value of zero, the matrix A must be noninvertible.

Chapter 7

Numeric Tools for Unconstrained NLPs

7.1 The Steepest Descent Method

For many unconstrained NLPs, critical points of the objective function are
difficult to compute using algebraic means. In this chapter, we investigate
iterative numeric methods for overcoming this obstacle.

During the past several years, numeric methods have evolved and improved
dramatically. We will not attempt to describe all developments in this field
but will instead focus on three elementary tools: the Steepest Descent Method,
Newton’s Method, and the Levenberg-Marquardt Algorithm.

7.1.1 Method Derivation

Throughout this chapter, we assume S ⊆ Rn is open, f : S→ R, and that our
goal is to solve the unconstrained NLP,

minimize f (x), x ∈ S. (7.1)

For a differentiable function, the most elementary method of estimating a
solution to (7.1) is the Steepest Descent Method. As the term “descent” suggests,
it approximates the minimum of a function f . However, when applied to − f ,
it approximates a maximum as well.

Assume x0 belongs to S, and recall from Exercise 3 of Section 6.2 that if d is a
unit vector in Rn, then the directional derivative of f at x0 in the direction of
d is given by

f ′d (x0) = lim
h→0+

f (x0 + hd) − f (x0)

h

= ∇ f (x0)td.

The Cauchy-Schwartz Inequality dictates that
∣∣∣∇ f (x0)td

∣∣∣ ≤ ‖∇ f (x0)‖‖d‖
= ‖∇ f (x0)‖,

231

232 Chapter 7. Numeric Tools for Unconstrained NLPs

with equality in the absolute value possible if and only if d = ± ∇ f (x0)

‖∇ f (x0)‖ .
(See ??.) Consequently f ′d (x0) is a minimum when d is chosen to have direction
exactly opposite that of ∇ f (x0). We summarize this fact by saying −∇ f (x0) is
the optimal descent direction of f at x0.

The Steepest Descent Method begins with an initial value x0 and a corre-
sponding optimal descent direction, −∇ f (x0). If we define

φ(t) = f
(
x0 − t∇ f (x0)

)
, (7.2)

then φ is a decreasing function for t sufficiently small and positive.

For example, suppose that A =

[
2 1
1 3

]
, b =

[
1
−4

]
, and c = 6, and that

f : R2 → R is the positive definite quadratic function given by

f (x) =
1

2
xtAx + btx + c (7.3)

= x2
1 + x1x2 +

3

2
x2

2 + x1 − 4x2 + 6.

If x0 =

[
1
−1

]
, straightforward calculations show that f (x0) = 12.5 and

∇ f (x0) =

[
2
−6

]
. In this case, (7.2) yields φ(t) = 46t2 − 40t + 12.5.

Figures 7.1 and 7.2 provide two depictions of the function φ. Figure 7.1
illustrates the graph of f , along with an embedded arc consisting of the
ordered triples {[

x0 − t∇ f (x0)
φ(t)

] ∣∣∣∣∣∣ 0 ≤ t ≤ 1

}
. (7.4)

7.1. The Steepest Descent Method 233

–5

–4

–3

–2

–1

0

1

2
–2

–1
0

1
2

3
4

5

20

40

x1

x2

f
x0 =

[
1
−1

]

FIGURE 7.1: One depiction of φ(t) = f
(
x0 − t∇ f (x0)

)
.

5

10

15

0 0.2 0.4 0.6 0.8 1

t

φ

FIGURE 7.2: A plot of φ(t) = f
(
x0 − t∇ f (x0)

)
.

Figure 7.2 depictsφ itself plotted as a function of t. The strict global minimum

of φ is given by t0 =
10

23
≈ .435. Using t0, we define

x1 = x0 − t0∇ f (x0) =

[
3/23

37/23

]
≈

[
.1304
1.609

]
. (7.5)

Note that f (x1) = φ(t0) < φ(0) = f (x0). In fact, direct computation shows that
f (x1) = 3.804.

234 Chapter 7. Numeric Tools for Unconstrained NLPs

Thus, through a process of minimizing a single-variable function, we have
obtained from x0 a new value x1, whose displacement from x0 is in the direc-
tion of steepest descent of f at x0, and whose corresponding objective function
value is significantly less. That this process can be repeated using x1 as the
new initial value leads to the creation of the algorithm known as the Steepest
Descent Method, sometimes also referred to as Cauchy’s Method, in honor of
its inventor. We now summarize the steps of the algorithm.

The Steepest Descent Method
To obtain an approximate solution of NLP (7.1) under the assumption f is
differentiable on S:

1. From the initial value x0 in S, compute the optimal descent direction,
d = −∇ f (x0).

2. Since S is open, for sufficiently small t, x0+ td belongs to S. Calculate the
smallest positive local minimum, t0, of the function φ(t) = f (x0 + td).

3. Using t0 from (2), define x1 = x0 + t0d. Then proceed to (1) and replace
x0 with x1. Compute the optimal descent direction at x1, a new single-
variable function φ, and so on.

Repeated application of steps (1)-(3) generates a sequence of values

x0, x1, x2, . . .

which, under ideal circumstances, converges to the global minimum of f
on S. The decision to terminate the algorithm generally follows one of two
approaches, each of which depends upon a specified tolerance, ǫ. The first
involves applying the algorithm until successive approximations, xk and xk−1,
satisfy ‖xk − xk−1‖ < ǫ. The second approach is to terminate the algorithm

when
∥∥∥∇ f (xk)

∥∥∥ < ǫ. Use of this latter inequality stems from the fact that at
the global minimum, x⋆, of a differentiable function f , ∇ f

(
x⋆

)
= 0. Unless

stated otherwise, we will always use the second of these two approaches for
deciding when to terminate the algorithm.

Table 7.1 lists results of the Steepest Descent Method applied to the function

f (x1, x2) = x2
1 + x1x2 +

3

2
x2

2 + x1 − 4x2 + 6 using an initial value x0 =

[
1
−1

]
and a

tolerance of ǫ = .01. We elect to terminate the algorithm when
∥∥∥∇ f (xk)

∥∥∥ < ǫ,
which occurs after the ninth iteration. The ending value, to four significant

digits, is given by x9 =

[
−1.397
1.796

]
. This is very close to the exact global minimum

of f , x⋆ =

[
− 7

5
9
5

]
.

7.1. The Steepest Descent Method 235

TABLE 7.1: Results of Steepest Descent Method applied to
f (x1, x2) = x2

1
+ x1x2 +

3
2 x2

2
+ x1 − 4x2 + 6

k xt
k

∥∥∥∇ f (xk)
∥∥∥

0 [1,−1] 2
√

10
1 [0.1304, 1.609] 3.025
2 [−0.9326, 1.255] 1.231
3 [−1.102, 1.763] 0.5895
4 [−1.309, 1.694] 0.2394
5 [−1.342, 1.793] 0.1151
6 [−1.382, 1.779] 0.04743
7 [−1.389, 1.799] 0.02247
8 [0.004646, 0.00001] 0.02077
9 [−1.397, 1.796] 0.009220

7.1.2 A Maple Implementation of the Steepest Descent Method

Maple’s basic programming structures are well suited for implement-
ing the Steepest Descent Method. The worksheet Steepest Descent
Method.mw demonstrates one means for doing so, creating a procedure,
SteepestDescentMethod, which approximates the minimum of a function of
two variables, f . The procedure call takes the form

SteepestDescentMethod(function,initial,N,tolerance),

where function is a differentiable function to be minimized, initial is the
initial value, x0, (written as a list), N is the maximum number of iterations,
and tolerance is the specified tolerance. The algorithm terminates when
either the number of iterations is reached or the gradient norm is less than the
desired tolerance. The returned value is the last iterate. Intermediate iterates
are stored in a list of points, iterates, a global variable accessible outside of
the procedure.

The following worksheet constructs the procedure and approximates the

minimum of f (x1, x2) = x2
1 + x1x2 +

3

2
x2

2 + x1 − 4x2 + 6 using an initial value of

x0 =

[
1
−1

]
, N = 10, and a tolerance of .01. (Note: Because this worksheet uses

the LinearAlgebra package version of the Norm command, it is important to
load the LinearAlgebra package after loading VectorCalculus.)

> restart: with(VectorCalculus):with(LinearAlgebra):

> SteepestDescentMethod := proc (function, initial, N, tolerance)
local x,f,Delf,d,j,epsilon,phi,t0; global iterates:

Create local and global variables.

x:=array(0 .. N):

236 Chapter 7. Numeric Tools for Unconstrained NLPs

Define array of iterates.

f:=unapply(function, [x1, x2]):

Create function.

Delf:=unapply(Gradient(function, [x1, x2]), [x1, x2]):

Create corresponding gradient function.

x[0]:=evalf(initial):

Set initial array value.

epsilon := 10:

Set initial epsilon to a large value.

j:=0: while (tolerance <= epsilon and j<=N-1) do

Create loop structure to perform algorithm.

d:=-Delf(op(x[j])): # Compute optimal descent direction.

phi:=unapply(simplify(f(x[j][1]+t*d[1],x[j][2]+t*d[2])),t):

t0:=subs(fsolve(D(phi)(t) = 0, {t = 0..infinity}, maxsols = 1),t):
Determine minimum of phi.

x[j+1]:=[x[j][1]+t0*d[1],x[j][2]+t0*d[2]]:

Use minimum of phi to construct next iterate.

epsilon:=evalf(Norm(Delf(x[j+1][1],x[j+1][2]),Euclidean)):

Update epsilon using gradient.

j:=j+1:

Increase loop index.

end do:

iterates:=[seq(x[i],i=0..j)]:RETURN(x[j]):end:

Construct iterates and return last array value.

> f:=(x1,x2)->x1ˆ2+x1*x2+3/2*x2ˆ2+x1-4*x2+6;
Enter function.

f := (x1, x2)→ x2
1 + x1x2 +

3

2
x2

2 + x1 − 4x2 + 6

> SteepestDescentMethod(f(x1, x2), [1, -1], 10, .01);
Procedure call using initial value [1,-1], bound of 10 iterations,

and tolerance, .01.

[−1.396540715, 1.795964168]

> iterates;
Print iterates.

[[1,−1], [.1304347826, 1.608695652], [−.9323671494), 1.254428341],

[−1.101799342), 1.762724918], [−1.308883132), 1.693696988],

[−1.341896490), 1.792737062], [−1.382246149), 1.779287175],

[−1.388678705), 1.798584838], [−1.396540715), 1.795964168]]

Note that the list, iterates, can then be plotted using the pointplot com-
mand.

7.1. The Steepest Descent Method 237

7.1.3 A Sufficient Condition for Convergence

Of course, the preceding worksheet illustrates an ideal situation, in which the
sequence of iterates obtained using the Steepest Descent Method converges to
a global minimum. The following Waypoint illustrates how this is not always
the case in general.

_ _

Waypoint 7.1.1. Apply the Steepest Descent Method to the function,
f : R2 → R, defined by f (x1, x2) = x4

1+x4
2−4x1x2+1. Use a tolerance of

ǫ = .1, and investigate the outcome using three different initial values,

x0 =

[
1
2

]
, x0 =

[
−1
−2

]
, and x0 =

[
−1
1

]
. Compare your results with those

obtained using algebraic methods from Section 6.4.

_ _

The preceding example, and others like it, demonstrate how the Steepest
Descent Method can generate a sequence, {xk}, that converges to a critical
point of f that is a local, but not global, minimum or that is a saddle point.
Thus, additional conditions must be met in order to ensure that the sequence
of iterates converges in the first place, and, if it does, whether it yields a local
or global minimum.

General conditions on f under which a sequence of iterates leads to critical
points are provided by a special case of a theorem due to Zoutendijk. We
shall omit the proof of this result, which can be found in more advanced texts
[36],[48].

Theorem 7.1.1. Assume S ⊆ Rn is nonempty and open, and suppose
f : S → R is differentiable on S. Choose x0 belonging to S, and define the
lower level set,

S0 =
{
x | x ∈ S and f (x) ≤ f (x0)

}
.

Suppose that∇ f is Lipschitz continuous in an open setO containing S0 , meaning
there exists a constant K (referred to as the Lipschitz constant) such that

∥∥∥∇ f (x1) − ∇ f (x2)
∥∥∥ ≤ K‖x1 − x2‖ for all x1, x2 ∈ O.

If there exists m ∈ R such that m ≤ f (x) for all x ∈ S, then the sequence
{xk} ⊆ S0 generated using the Steepest Descent Method satisfies

lim
k→∞

∥∥∥∇ f (xk)
∥∥∥ = 0. (7.6)

This theorem does not state that the sequence {xk} converges to the global
minimum of f on S. In fact, it does not even state that this sequence converges

238 Chapter 7. Numeric Tools for Unconstrained NLPs

at all. However, if even some subsequence of this sequence has a limit point,
x⋆, in S, then the Lipschitz continuity and (7.6) guarantee ∇ f (x⋆) = 0. (We
note that if S0 is closed and bounded, then such a subsequence must exist due
to a fundamental analysis result known as the Bolzano-Weierstrass Theorem.
The limit of the subsequence must belong to S0 or its boundary.) Because f (xk)
is decreasing in k, x⋆ must therefore correspond to either a local minimum
or a saddle point.

Verifying that ∇ f is Lipschitz continuous by definition can be tedious and
should be avoided when possible. For several classes of functions, however,
Lipschitz continuity follows from certain matrix norm inequalities. (See Ap-
pendix B.) Three straightforward cases are the following:

1. If f : Rn → R is the general quadratic function defined by

f (x) =
1

2
xtAx + btx + c, where A is an n by n matrix, b belongs to Rn, c

is real, then ∇ f (x) = Ax + b so that
∥∥∥∇ f (x1) − ∇ f (x2)

∥∥∥ = ‖A (x1 − x2) ‖
≤ ‖A‖‖x1 − x2‖,

Here, ‖A‖ denotes the spectral norm of A, defined as the square root of
the largest eigenvalue of AAt.

2. If f is as defined as above and A is also symmetric, eigenvalues of AAt

are the eigenvalues of A2, and the spectral norm reduces to ‖A‖ = ρ(A),
where ρ(A) is the spectral radius, or maximum of the absolute values of
the eigenvalues of A.

3. More generally, if f all second-order partial derivatives of f exist and
are continuous on O, then ∇ f is Lipschitz continuous on O provided

‖H f (x)‖ = ρ
(
H f (x)

)
is bounded by a constant independent of x in O. We

will omit the proof of this result, which follows from a generalization
to Rn of the Mean Value Theorem[4].

The unconstrained ConPro Manufacturing Company NLP,

minimize f (x1, x2) = −1400x
1
2

1
x

1
3

2
+ 350x1 + 200x2,

where x =

[
x1

x2

]
∈ S = R2

+ = {(x1, x2) | x1, x2 > 0} , (7.7)

illustrates the usefulness of Theorem 7.1.1. (Hereafter, we will state the ConPro
objective in terms of minimization.) We first note that f is bounded below on

S. Now suppose we let x0 =

[
10
10

]
, which corresponds to the lower level set

S0 =
{
x | f (x) ≤ f (10, 10)

}
shown in Figure 7.3.

7.1. The Steepest Descent Method 239

0

50

100

150

200

250

0 50 100 150 200 250

x1

x2

O

FIGURE 7.3: The lower level set S0 =
{
x | f (x) ≤ f (10, 10)

}
.

Clearly we can draw an bounded, open setO in S that contains S0 and has the

property that for any x =

[
x1

x2

]
inO, δ < x1, x2 ≤M for some δ > 0 and finite M.

The set contained within the dashed lines in Figure 7.3 is one such example.

The eigenvalues of the Hessian of f are given by

λ =
175

(
9x1x2

2 + 8x3
1
±

√
81x4

2
x2

1
+ 64x6

1

)

9x
5
2

1
x

5
3

2

, (7.8)

which are in fact both positive. The larger of these two eigenvalues is obtained
by using the positive root in (7.8). This fraction is bounded by a constant
independent of x inO, due to the fact that its numerator is bounded there and
its denominator is bounded away from zero. Specifically,

|λ| =
175

(
9x1x2

2
+ 8x3

1
+

√
81x4

2
x2

1
+ 64x6

1

)

9x
5
2

1
x

5
3

2

≤
175

(
9MM2 + 8M3 +

√
81M4M2 + 64M6

)

9δ
5
2 δ

5
3

=
175

(
17M3 +

√
145M6

)

9δ
25
6

.

Thus, ∇ f is Lipschitz continuous on O, and we conclude that the hypothesis
of Theorem 7.1.1 is satisfied. The first eight Steepest Descent Method iterates,

240 Chapter 7. Numeric Tools for Unconstrained NLPs

starting from x0 =

[
10
10

]
, are given in Table 7.2. In the fourth column,

∥∥∥xk − x⋆
∥∥∥

measures the distance from xk to the true minimum of f , which we computed
in Section 6.4 and is given by

x⋆ =
(

784

9
,

2744

27

)
≈ (87.11, 101.63).

TABLE 7.2: Results of the Steepest Descent Method applied to the ConPro
objective function, f , from (7.7)

k xt
k

∥∥∥∇ f (xk)
∥∥∥

∥∥∥xk − x⋆
∥∥∥

0 [10, 10] 173.245 119.759
1 [91.680, 85.907] 40.277 16.373
2 [82.493, 95.792] 3.6065 7.444
3 [87.236, 100.200] 2.788 1.435
4 [86.558, 100.930] .420 .892
5 [87.125, 101.455] .334 .175
6 [87.043, 101.543] .0152 .110
7 [87.113, 101.608] .0411 .022
8 [87.103, 101.619] .006 .014

7.1.4 The Rate of Convergence

Theorem 7.1.1 provides conditions under which the Steepest Descent Method
yields a sequence of iterates that converges to a critical point. It does not,
however, convey information regarding rates of convergence. Theorem 7.1.2
serves this purpose.

Theorem 7.1.2. Suppose that S ⊆ Rn is open, that f : S → R has continu-
ous second-order partial derivatives, and that the Steepest Descent Method
starting from x0 generates a sequence of iterates {xk} converging to the local
minimum of f , which we label x⋆. If H f (x⋆) is positive definite, then the
objective values satisfy

f (xk+1) − f (x⋆) ≤
(
λn − λ1

λn + λ1

)2 (
f (xk) − f (x⋆)

)
, k = 0, 1, . . . , (7.9)

where λn and λ1 denote the largest and smallest eigenvalues of H f (x⋆),
respectively.

Furthermore, if f is a positive definite quadratic function, meaning it takes
the form

f (x) =
1

2
xtAx + btx + c, (7.10)

7.1. The Steepest Descent Method 241

where c is real, b belongs to Rn, and A is an n-by-n positive definite matrix,
then the Steepest Descent Method starting from any x0 in Rn generates a
sequence of inputs, {xk}, that converges to the global minimum of f , x⋆ at a
rate governed by

∥∥∥xk − x⋆
∥∥∥2 ≤ 2

λ1

(
λn − λ1

λn + λ1

)2k (
f (x0) − f (x⋆)

)
, k = 0, 1, (7.11)

Inequality (7.9) is sometimes rephrased by stating that the sequence of objec-
tive values

{
f (xk)

}
converges to f (x⋆) at a linear rate. Use of this term stems

from the fact that the ratio,
f (xk+1) − f (x⋆)

f (xk) − f (x⋆)
, is bounded.

The proof of Theorem 7.1.2 can be found in more advanced texts [4]. Instead
of proving it, we examine its validity in the context of the positive definite

quadratic function from (7.3). Thus, f (x) =
1

2
xtAx+btx+ c, where A =

[
2 1
1 3

]
,

b =

[
1
−4

]
, and c = 6.

Assume that x0 =

[
1
−1

]
, in which case f (x0) = 12.5. Recall that the global

minimum is given by x⋆ =

[
− 7

5
9
5

]
and f (x⋆) = 1.7.

The Hessian, H f (x) is simply A, whose eigenvalues are given by λ1 =
5 −
√

5

2

and λ1 =
5 +
√

5

2
. Thus

(
λ2 − λ1

λ2 + λ1

)2

=
1

5
.

Using the first four Steepest Descent Method iterates from Table 7.1, we obtain
the values shown in Table 7.3. In each row, the ratio of the second entry to the
third is always less than or equal to 1

5 , thereby demonstrating the validity of
inequality (7.9) for these first few iterates.

Table 7.4 focuses on the iterates themselves and not their corresponding
objective values. It illustrates the validity of inequality (7.11).

Perhaps the most important conclusion we can draw from Theorem 7.1.2
is that eigenvalues play a crucial role in determining convergence rate. In
particular, the greater the difference between the largest and smallest eigen-

values of H f (x⋆), the closer that
(
λn − λ1

λn + λ1

)
becomes to one. This in turn slows

242 Chapter 7. Numeric Tools for Unconstrained NLPs

TABLE 7.3: Objective output differences

k f (xk+1) − f (x⋆) f (xk) − f (x⋆)
0 2.1043 10.8000
1 .4100 2.1043
2 .0799 .4100
3 .0156 .0799
4 .0030 .0156

TABLE 7.4: Error between xk and x⋆

k
∥∥∥xk − x⋆

∥∥∥2 2
λ1

(
λn−λ1

λn+λ1

)2k (
f (x0) − f (x⋆)

)

0 13.6000 15.6210
1 2.3788 3.1260
2 .5163 .6251
3 .0903 .1250
4 .0196 .0250

down the rates of convergence. Exercises 1 and 2 provide further examples
illustrating this phenomenon.

Exercises Section 7.1

1. Suppose that f : R2 → R is defined by f (x) =
1

2
xtAx + btx, where

A =

[
3 0
0 4

]
and b =

[
−3
2

]
, and let x0 =

[
5
5

]
.

(a) Calculate the global minimum of f on R2.

(b) Determine the optimal descent direction, d, of f at x0.

(c) Calculate the smallest positive local minimum of the function
φ(t) = f (x0 + td).

(d) Use your previous result to calculate the first Steepest Descent
Method iterate, x1.

(e) Calculate the next four Steepest Descent Method iterates, and ver-
ify that formulas (7.9) and (7.11) are valid.

(f) How many iterations are required before
∥∥∥∇ f (xk)

∥∥∥ < .01?

2. Repeat the previous question using A =

[
10 0
0 .1

]
, b =

[
−3
2

]
, and x0 =

[
5
5

]
.

7.1. Exercises Section 7.1 243

How does the rate of convergence to the global minimum compare with
that in the previous question? What accounts for any major differences?

3. Suppose that f : R2 → R is defined by
f (x1, x2) = x4

1 + 2x4
2 + 5x2

1 + 4x2
2 − 10x2

1x2. By choosing different initial val-
ues, demonstrate how the Steepest Descent Method leads to sequences
converging to a local minimum, a global minimum, and a saddle point
of f .

4. Assume that f is the ConPro objective function from (7.7) and that

x0 =

[
10
10

]
. Verify that the first five Steepest Descent Method iterates

satisfy inequality (7.9).

5. Suppose that f : R2 → R is defined by f (x1, x2) = ln(1+ x2
1)+ x2

2 and that

x0 =

[
2
2

]
. Observe that f is bounded below by zero.

(a) Plot the lower set,

S0 =
{
x | x ∈ S and f (x) ≤ f (x0)

}
.

Note: Maple’s implicitplot command can assist in this process.
If the function, f , has been defined and the plotspackage has been
loaded, enter the following command:
implicitplot(f(x1,x2)<=evalf(f(2,2)),x1=-20..20,x2=-5..5,

coloring=[grey,white],filled=true);

(b) Verify that there is an open set O containing S0, in which ρ
(
H f (x)

)

is bounded.

(c) Using x0 as an initial value, verify that the sequence of Steepest
Descent Method iterates converges to the origin, which is in fact a
global minimum.

6. Repeat the previous question using f : R2 → R defined by

f (x1, x2) = x4
1 − 8x3

1 + 24x2
1 − 32x1 + 4x2

2 − 4x2 and x0 =

[
2
2

]
.

244 Chapter 7. Numeric Tools for Unconstrained NLPs

7.2 Newton’s Method

7.2.1 Shortcomings of the Steepest Descent Method

A major drawback of the Steepest Descent Method is its slow rate of con-
vergence near the minimum. The simple positive definite quadratic function,

f (x1, x2) = x2
1+x1x2+

3

2
x2

2+x1−4x2+6, from (7.3) illustrates this phenomenon,

both in Table 7.1, where the relative change in
∥∥∥∇ f (xk)

∥∥∥ is largest for the first
few iterations, but also in Figure 7.4. Superimposed on this diagram are four
contours of f , the first three Steepest Descent Method iterates, and scaled
versions of the corresponding optimal descent directions, −∇ f (xk), where
k = 0, 1, 2, 3. The descent direction vectors demonstrate a drawback with the
Steepest Descent Method known as “zig-zagging” or “hemstitching.” This
phenomenon, which frequently results for functions having mildly “elliptic”
or “elongated” valleys, slows the rate of convergence.

0

2

4

–4 –2 2

x1

x2

x0

x1

x2

x3

f (x) = 12.5

f (x) = 8

f (x) = 4

f (x) = 2

FIGURE 7.4: Steepest descent approximations xk, k = 0, 1, 2, 3 for

f (x1, x2) = x2
1 + x1x2 +

3

2
x2

2 + x1 − 4x2 + 6, along with scaled optimal descent

directions.

7.2.2 Method Derivation

Newton’s Method is well-suited for addressing this problem, although it does
require that the objective function, f , be twice-differentiable, and it has its own
computational drawbacks. Suppose S ⊆ Rn, f : S→ R is twice-differentiable,
and x0 belongs to the interior of S. For all ‖d‖ sufficiently small, x0+d belongs
to S and second-order differentiability implies

7.2. Newton’s Method 245

f (x0) − f (x0 + d) ≈ −∇ f (x0)td − 1

2
dtH f (x0)d. (7.12)

If we intend to express the first iterate, x1, in the form x1 = x0 + d, then the
decrease in f is maximized by differentiating the right-hand side of (7.12)
with respect to the vector d. Doing so, setting the result equal to 0 and solving
for d, we obtain

d = −H f (x0)−1∇ f (x0), (7.13)

provided H f (x0)−1 exists.

We call the vector d from (7.13) the Newton direction of f at x0. It is the second-
order analog of the optimal descent direction associated with the Steepest
Descent Method. Like the optimal descent direction, it produces a curve,
“embedded” in the graph of f . Figure 7.5 depicts both the optimal descent

and Newton directions starting from x0 =

[
1
−1

]
for the quadratic function,

f (x1, x2) = x2
1 + x1x2 +

3

2
x2

2 + x1 − 4x2 + 6.

x0 =

[
1
−1

]

x1

x2

Optimal Descent Direction

Newton Direction

FIGURE 7.5: Illustration of optimal descent and Newton directions for

f (x1, x2) = x2
1 + x1x2 +

3

2
x2

2 + x1 − 4x2 + 6 starting at x0.

Thus, starting from x0 and moving in the Newton direction leads to
x1 = x0+d = x0−H f (x0)−1∇ f (x0). Of course, assuming invertibility of the Hes-
sian at each stage, this process can be repeated, thereby leading to Newton’s
Method. We now summarize the steps of the algorithm.

246 Chapter 7. Numeric Tools for Unconstrained NLPs

Newton’s Method
To obtain an approximate solution of NLP (7.1) under the assumption f is
twice-differentiable on S:

1. From the initial value x0 in S, calculate the Newton direction, d =
−H f (x0)−1∇ f (x0), provided H f (x0)−1 exists.

2. Define x1 = x0 + d = x0 −H f (x0)−1∇ f (x0).

3. Proceed to (1) and replace x0 with x1. Compute the Newton direction of
f at x1, x2, and so on.

For example, recall the positive definite quadratic function from (7.3). If

A =

[
2 1
1 3

]
, b =

[
1
−4

]
, and c = 6, this function is given by

f (x) =
1

2
xtAx − btx + c

= x2
1 + x1x2 +

3

2
x2

2 + x1 − 4x2 + 6

If x0 =

[
1
−1

]
, then ∇ f (x0) =

[
2
−6

]
and H f (x0) =

[
2 1
1 3

]
. Thus, the Newton

direction at x0 becomes d =

[
−2.4
2.8

]
and x1 = x0 + d =

[
−1.4
1.8

]
. Recall from

Section 7.1 that x1 is precisely the global minimum of f ! That the first iterate of
Newton’s Method leads to a global minimum is true in general for all positive
definite quadratic mappings. Verification of this fact is fairly straightforward.

_ _

Waypoint 7.2.1. Suppose that f : Rn → R is the positive definite
quadratic function defined by

f (x) =
1

2
xtAx − btx + c,

where A is any n-by-n positive definite matrix, b is in Rn, and c is a
real scalar.

1. Compute ∇ f (x), and use your result to determine the global
minimum x⋆ in terms of A and b.

2. Given x0 in Rn, determine the Newton direction in terms of x0,
A, and b.

3. Show that the first iterate, x1, obtained using Newton’s method
is the global minimum obtained in (1).

_ _

7.2. Newton’s Method 247

7.2.3 A Maple Implementation of Newton’s Method

The SteepestDescentMethodprocedure outlined in Section 7.1 is easily mod-
ified to create a new procedure, NewtonsMethod, which may be found in the
worksheet Newtons Method.mw. The procedure call takes the form

NewtonsMethod(function,initial,N,tolerance),

where function is a twice-differentiable function to be minimized, initial is
the initial value, x0, (written as a list), N is the maximum number of iterations,
and tolerance is the specified tolerance. The algorithm terminates when
either the number of iterations is reached or the gradient norm is less than the
desired tolerance. The returned value is the approximate minimum value.
Intermediate iterates leading to the approximate minimum are stored in a
list, iterates, a global variable accessible outside of the procedure.

The following worksheet constructs the procedure and approximates the
minimum of the ConPro objective,

f (x1, x2) = −1400x
1
2

1
x

1
3

2
+ 350x1 + 200x2 using x0 =

[
10
10

]
, N = 5, and a tolerance

of ǫ = .01.

> restart: with(VectorCalculus):with(LinearAlgebra):

> NewtonsMethod := proc (function, initial, N, tolerance)
local x,f,Delf,Hf,d,j,epsilon; global iterates:

Create local and global variables.

x:=array(0 .. N):

Define array of iterates.

f:=unapply(function, [x1, x2]):

Create function.

Delf:=unapply(Gradient(function, [x1, x2]), [x1, x2]):

Create corresponding gradient function.

Hf:=unapply(Hessian(function, [x1, x2]), [x1, x2]):

Create corresponding Hessian matrix function.

x[0]:=evalf(initial):

Set initial array value.

epsilon := 10:

Set initial epsilon to a large value.

j:=0: while (tolerance <= epsilon and j<=N-1) do

Create loop structure to perform algorithm.

d:=-convert(MatrixInverse(Hf(x[j][1],x[j][2])).Delf(x[j][1],x[j][2]),list):

Compute Newton direction.

x[j+1]:=[x[j][1]+d[1],x[j][2]+d[2]]:

Compute next iterate.

epsilon:=evalf(Norm(Delf(x[j+1][1],x[j+1][2]),Euclidean)):

Update epsilon using gradient.

248 Chapter 7. Numeric Tools for Unconstrained NLPs

j:=j+1:

Increase loop index.

end do:

iterates:=[seq(x[i],i=0..j)]:RETURN(x[j]):end:

Construct iterates and return last array value.

> f:=(x1,x2)->-1400x1ˆ(1/2)x2ˆ(1/3)+350x1+200x2;
Enter function

f := (x1, x2)→ −1400x
1
2

1
x

1
3

2
+ 350x1 + 200x2

> NewtonsMethod(f(x1, x2), [10,10], 5, .01);
Procedure call using initial value [10,10], bound of 5 iterations,

and tolerance, .01.

[87.10975551, 101.6262013]

> iterates;
Print iterates.

[[10., 10.], [28.06287805, 29.11130610], [56.81932208, 61.72021291],

[80.07576281, 91.03969995], [86.73692387, 100.9216310], [87.10975551, 101.6262013]]

7.2.4 Convergence Issues and Comparison with the Steepest De-
scent Method

The preceding examples suggest that Newton’s Method is more effective for
approximating a local or global minimum of a function than is the Steepest
Descent Method. However, this result is not true in general, and Newton’s
Method has its own computation drawbacks. Among these are the following:

1. Newton’s Method assumes second-order differentiability of the objec-
tive function, f , and requires evaluating the Hessian matrix, H f (xk), at
each iteration.

2. Whereas the Steepest Descent Method requires solving an equation in
a single variable at each iteration, Newton’s Method requires solving
a system of equations. This task frequently requires a much greater
number of computations.

3. To obtain a unique solution to this system, we require that H f (xk) be
invertible, which may not be the case. As a result, the method fails
altogether. However, even if H f (x0) is invertible, it may be “almost
non-invertible,” as measured by having eigenvalues extremely small in
magnitude. Numeric results then become very sensitive to computa-
tional roundoff error, a general phenomenon known as ill-conditioning.

7.2. Newton’s Method 249

While Newton’s Method has its drawbacks, the advantage of its use stems
from the fact that an initial value sufficiently close to a known local minimum
yields a sequence of iterates converging to the minimum more rapidly to
the minimum than a sequence obtained using the Steepest Descent Method.
Theorem 7.2.1 summarizes this result.

The statement of this theorem requires us to recall the notion of a matrix
norm as summarized in Appendix ??. Any matrix norm, ‖ · ‖, on Rn satisfies
‖Ax‖ ≤ ‖A‖‖x‖ for every x inRn. As our discussion focuses almost exclusively
on the case when A is symmetric, we will use, ‖A‖ = ρ(A), where ρ(A) is the
spectral radius, or maximum of the absolute values of the eigenvalues of A.

Because the Hessian matrix, H f (x), is a function of x, so too will be its matrix
norm. We say that H f (x) is Lipschitz continuous in the matrix norm if there
exists a constant, M, satisfying

∥∥∥H f (x1) −H f (x2)
∥∥∥ ≤M‖x1 − x2‖. (7.14)

Phrased another way, the norm of the matrix difference, H f (x1) − H f (x2), is
bounded by a constant times the distance from x2 to x1. A consequence of
(7.15), whose proof we omit, is that if H f (x1) is positive definite and if H f (x) is
Lipschitz continuous in some neighborhood of x1, then H f (x2) is also positive
definite and bounded below in norm by some constant, m, independent of x2,
provided ‖x1 − x2‖ is sufficiently small.

With this background in mind, we now state an important convergence result.

Theorem 7.2.1. Assume S ⊆ Rn is nonempty, open set. Suppose f : S → Rn

is continuously twice-differentiable, having a local minimum at x⋆, where
H f (x⋆) is positive definite. Suppose that for x sufficiently close to x⋆, H f (x)
is Lipschitz continuous in the matrix norm, meaning there exists a constant,
M, satisfying ∥∥∥H f (x1) −H f (x2)

∥∥∥ ≤M‖x1 − x2‖, (7.15)

for all x1 and x2 sufficiently close to x⋆. Then, if x0 is sufficiently close to x⋆,
the sequence of Newton Method iterates satisfies

∥∥∥xk+1 − x⋆
∥∥∥ ≤ C

∥∥∥xk − x⋆
∥∥∥2

for k = 0, 1, 2, . . ., (7.16)

for some constant, C.

Proof. Choose δ in (0, 1) small enough to satisfy the following three conditions:

1. Inequality (7.15) holds whenever
∥∥∥x1 − x⋆

∥∥∥ and
∥∥∥x2 − x⋆

∥∥∥ are less than
δ.

2. H f (x) is positive definite if ‖x − x⋆‖ < δ

250 Chapter 7. Numeric Tools for Unconstrained NLPs

3. 0 < m ≤ ‖H f (x)‖ if ‖x − x⋆‖ < δ

Suppose x0 is chosen close enough to x⋆ so that

‖x0 − x⋆‖ < min

δ,
√

2m

M
· δ

 . (7.17)

.

By (2), H f (x) is invertible so that x1 = x0 − H f (x0)−1∇ f (x0) is defined. Since
∇ f (x⋆) = 0, we have

x1 − x⋆ = x0 −H f (x0)−1∇ f (x0) − x⋆

= x0 − x⋆ +H f (x0)−1 (∇ f (x⋆) − ∇ f (x0)
)
. (7.18)

We now focus on the difference
(∇ f (x⋆) − ∇ f (x0)

)
in (7.18) and introduce a

vector-valued function φ : [0, 1]→ Rn given by

φ(t) = ∇ f
(
tx⋆ + (1 − t)x0

)
.

Note that φ(0) = ∇ f (x0) and φ(1) = ∇ f (x⋆). An application of the chain rule
yields

φ′(t) = H f
(
tx⋆ + (1 − t)x0

) (
x⋆ − x0

)
,

which is continuously differentiable on [0, 1] since f is continuously twice-
differentiable on S. By the Fundamental Theorem of Calculus,

∇ f (x⋆) − ∇ f (x0) =

∫ t=1

t=0

H f
(
tx⋆ + (1 − t)x0

) (
x⋆ − x0

)
dt. (7.19)

If we substitute (7.19) into (7.18), we obtain

x1 − x⋆ = x0 − x⋆ +H f (x0)−1 (∇ f (x⋆) − ∇ f (x0)
)

(7.20)

= H f (x0)−1

(
H f (x0)

(
x0 − x⋆

)
+

(∫ t=1

t=0

H f
(
tx⋆ + (1 − t)x0

) (
x⋆ − x0

)
dt

))
.

= H f (x0)−1

∫ t=1

t=0

(
H f

(
tx⋆ + (1 − t)x0

) −H f (x0)
) (

x⋆ − x0
)

dt.

We now apply the result from (7.20) to bound the norm of the vector difference,
x1 − x⋆. In this process we utilize the fact that the eigenvalues of H f (x0)−1

are the reciprocals of the eigenvalues of H f (x0). Hence,
∥∥∥H f (x0)−1

∥∥∥ ≤ m. Using
this bound, along with properties of the definite integral, and the Lipschitz
continuity of H f (x), we obtain the following sequence of inequalities:

7.2. Newton’s Method 251

∥∥∥x1 − x⋆
∥∥∥ =

∥∥∥∥∥∥H f (x0)−1

∫ t=1

t=0

(
H f

(
tx⋆ + (1 − t)x0

) −H f (x0)
) (

x⋆ − x0
)

dt

∥∥∥∥∥∥

≤
∥∥∥H f (x0)−1

∥∥∥
∫ t=1

t=0

∥∥∥H f
(
tx⋆ + (1 − t)x0

) −H f (x0)
∥∥∥
∥∥∥x⋆ − x0

∥∥∥ dt

≤
∥∥∥H f (x0)−1

∥∥∥
∫ t=1

t=0

M
∥∥∥tx⋆ + (1 − t)x0 − x0

∥∥∥
∥∥∥x⋆ − x0

∥∥∥ dt

=
∥∥∥H f (x0)−1

∥∥∥
∫ t=1

t=0

M
∥∥∥x⋆ − x0

∥∥∥2
t dt

=
M

2m

∥∥∥x⋆ − x0

∥∥∥2
.

Hence, ∥∥∥x1 − x⋆
∥∥∥ ≤ M

2m

∥∥∥x0 − x⋆
∥∥∥2
.

Since ‖x0 − x⋆‖ <
√

2m

M
· δ, we see that

∥∥∥x1 − x⋆
∥∥∥ ≤ δ2 < δ, so the preceding

argument can be applied again, this time starting at x1. Repeating the results,

we eventually obtain inequality (7.16) with C =
M

2m
, which completes the

proof. �

Because inequality (7.16) implies that

∥∥∥xk+1 − x⋆
∥∥∥

∥∥∥xk − x⋆
∥∥∥2
≤ C,

Theorem 7.2.1 can be rephrased as saying the sequence of iterates, starting at
x0, converges to x⋆ at a quadratic rate. Because the denominator in the ratio is
squared, this type of convergence is more rapid than linear convergence, as
described following the statement of Theorem 7.1.2.

Unfortunately, while Theorem 7.2.1 guarantees quadratic convergence pro-
vided x0 is chosen sufficiently close x⋆, the proof given here does not explic-
itly indicate “how close” is good enough. Part of the difficulty stems from the
facts we must establish that H f (x) is Lipschitz continuous and also determine
the value of the Lipschitz constant, M. In most cases, Lipschitz continuity
itself follows from “smoothness” conditions on f . For example, if all third-
order partial derivatives of f are continuous in a neighborhood of x⋆, then
Lipschitz continuity holds in that neighborhood. This follows from a higher-
dimensional version of the Mean Value Theorem. Bounds on the third-order
partial derivatives can then be used to estimate M. In practice, however, this

252 Chapter 7. Numeric Tools for Unconstrained NLPs

work is not necessary as convergence of the iterates can occur even if x0 is
relatively far from x⋆.

In the general case of a twice-differentiable function, Newton’s Method and
the Steepest Descent Method frequently complement one another. The former
method converges more rapidly when iterates are near the global minimum
and less rapidly when they are far away. For the Steepest Descent method,
the opposite is true.

Minimization of the ConPro objective function,

f (x1, x2) = −1400x
1
2

1
x

1
3

2
+ 350x1 + 200x2, illustrates this principle. Table 7.5 lists

the first five iterations of both methods using an initial value of x0 =

[
10
10

]
.

TABLE 7.5: Results of the Steepest Descent and Newton’s Methods applied
to the ConPro objective function

Steepest Descent Method Newton’s Method

k xt
k

∥∥∥xk − x⋆
∥∥∥ xt

k

∥∥∥xk − x⋆
∥∥∥

0 [10, 10] 119.76 [10, 10] 119.76
1 [91.680, 85.907] 16.373 [28.063, 29.111] 93.518
2 [82.493, 95.792] 7.444 [56.819, 61.720] 50.103
3 [87.236, 100.200] 1.435 [80.0760, 91.040] 12.714
4 [86.558, 100.930] 0.892 [86.7370, 100.922] 0.801
5 [87.125, 101.455] 0.175 [87.110, 101.626] 0.004

Both methods demonstrate convergence of iterates to the global minimum,

but they do so in a different manner. For small k, the error
∥∥∥xk − x⋆

∥∥∥ using
the Steepest Descent Method is much less than obtained using Newton’s
Method. Starting at k = 4, this trend reverses. In fact, if ǫ = .01, the Steepest
Descent Method requires nine iterations before∇ f (xk) < ǫ, whereas, Newton’s
Method requires only five. That one of these methods is more effective when
iterates are far from the global minimum and the other is more effective when
iterates are near prompts the question of whether it is possible to construct
a single procedure that blends Steepest Descent and Newton Methods so as
to be effective in either case. In the next section, we see that this is the case
and combine the best of both techniques, creating a new procedure known
as the Levenberg-Marquardt Algorithm, which is particularly well-suited for
approximating solutions of unconstrained NLPs, especially those arising in
the area of nonlinear regression.

7.2. Exercises Section 7.2 253

Exercises Section 7.2

1. Suppose f : R2 → R is given by f (x1, x2) = x4
1−8x3

1+24x2
1−32x1+4x2

2−4x2.
For what initial values, x0, will Newton’s method fail to produce a
sequence of iterates?

2. Rosenbrock’s valley function, f (x1, x2) = 100(x2−x2
1)2+(1−x1)2, is useful for

comparing the efficiency of various numeric optimization algorithms.
Figure 7.6 illustrates the graph of this function, which varies signifi-
cantly in magnitude in a neighborhood of the origin.

x1

x2

FIGURE 7.6: Rosenbrock’s valley function.

(a) Verify that x⋆ =

[
1
1

]
is both a local and global minimum.

(b) Suppose x0 =

[
−1
0

]
. Calculate the Newton direction of f at x0. Use

your result to calculate the first Newton Method iterate, x1.

(c) How many iterations of Newton’s Method are required to estimate
the minimum of f with a tolerance of .01?

(d) Now determine the optimal descent direction of f at x0. Use your
result to calculate the first Steepest Descent Method iterate, x1.

254 Chapter 7. Numeric Tools for Unconstrained NLPs

(e) Calculate two more Steepest Descent Method iterates, x2 and x3.
Using the eigenvalues of H f (x⋆), verify that formula (7.9) from
Section 7.1 is satisfied for these iteration values.

(f) How many iterations of the Steepest Descent Method are required
to estimate the minimum of f with a tolerance of .01?

3. Suppose that f : R2 → R is defined by f (x1, x2) = ln(1 + x2
1) + x2

2 and

that x0 =

[
2
2

]
. Recall that the Steepest Descent Method, starting with

x0, produces a sequence of iterates converging to the global minimum
of f at the origin. Show that Newton’s Method fails to produce such
a convergent sequence. Then experiment with other initial values, x0,
and try to account for the varying outcomes by using the Hessian of f .

4. Suppose that f : R2 → R is defined by f (x1, x2) = x4
1 + x2

2.

(a) Verify that f is convex on R2 and that, starting from any x0, in R2,
the sequence of Newton Method iterates converges to the global

minimum x⋆ =

[
0
0

]
.

(b) Show explicitly that convergence is not quadratic, and explain why
the hypothesis of Theorem 7.2.1 is not satisfied. (Hint: To construct
a sequence that fails to exhibit quadratic convergence, consider
setting x2 = 0. Then Newton’s Method yields a sequence of points
on the x1-axis that converge to zero, but not at a quadratic rate.)

7.3. The Levenberg-Marquardt Algorithm 255

7.3 The Levenberg-Marquardt Algorithm

7.3.1 Interpolating between the Steepest Descentand Newton Methods

The Levenberg-Marquardt Algorithm combines the Steepest Descent and New-
ton Methods in a manner that emphasizes the first of the two when xk is far
from a local minimum of f and the second when xk is close. The method was
first developed in 1944 by K. Levenberg and later refined in the early 1960s
by D. W. Marquardt [23],[28].

Suppose S ⊆ Rn is open, f : S → R is twice-differentiable, and that we wish
to solve the unconstrained NLP,

minimize f (x), x ∈ S.

Assume x0 belongs to S. The Levenberg Method starts with the initial value x0

and, at each iteration, uses a trial iterate formula given by

w = xk −
[
H f (xk) + λIn

]−1
∇ f (xk) k = 0, 1, 2, (7.21)

In this formula, In denotes the n-by-n identity matrix, λ is a positive damping
parameter, whose role is best understood by comparing extreme cases. Ifλ = 0,
then (7.21) reduces to the iteration formula for Newton’s Method. If λ is
extremely large, then

w ≈ xk − λ−1∇ f (xk),

so that w is essentially the first Steepest Descent Method iterate of f starting
from xk. Outside of these two extreme cases, λ controls the extent to which
each method contributes to the interpolation of the two. Of course, we also
assumeλyields a matrix sum, H f (xk)+λIn, that is invertible. This will certainly
be the case if λ is sufficiently large, as then H f (xk) + λIn ≈ λIn.

7.3.2 The Levenberg Method

The key to using (7.21) effectively is to adjust the damping parameter if the
trial iterate has an objective value no less than that of xk. We start with a
relatively small value of λ so that our interpolation formula is biased toward
Newton’s Method and hence, in light of Theorem 7.2.1, is more likely to yield
a sequence converging to a minimum at a quadratic rate. If our choice of λ
results in a value of w, whose objective value is less than that of xk, i.e., if
f (w) < f (xk), then we retain the trial iterate and set xk+1 = w. From there,
we decrease the damping parameter, λ, and calculate a new trial iterate, w,
where xk+1 replaces xk in (7.21). On the other hand, if f (w) ≥ f (xk), then we
increase λ until we obtain a new trial iterate, w, for which f (w) < f (xk). This

256 Chapter 7. Numeric Tools for Unconstrained NLPs

process is repeated as necessary and leads to the method of Levenberg. We
now summarize the steps of the algorithm.

The Levenberg Method
To obtain an approximate solution of NLP (7.1) under the assumption f is
twice-differentiable on S:

1. Start with an initial value x0 and a small, positive damping parameter
λ.

2. For k ≥ 0, calculate the trial iterate,

w = xk −
[
H f (xk) + λIn

]−1
∇ f (xk). (7.22)

3. If f (w) < f (xk), then set xk+1 = w, decrease λ, and return to (2) with xk

replaced by xk+1.

4. If f (w) ≥ f (xk), then increase λ and return to (2).

5. Repeat the process until a desired level of tolerance has been achieved,

e.g.,
∥∥∥∇ f (xk)

∥∥∥ is smaller than a specified value ǫ.

The algorithm does not stipulate the extent to which we should decrease or
increase λ in (3) and (4), respectively. We return to this issue shortly. For now,
mere experimentation with various positive values will suffice.

As an example, we now apply one iteration to the unconstrained ConPro
Manufacturing Company NLP,

minimize f (x1, x2) = −1400x
1
2

1
x

1
3

2
+ 350x1 + 200x2,

where x =

[
x1

x2

]
∈ S = R2

+ = {(x1, x2) | x1, x2 > 0} , (7.23)

with initial value x0 =

[
10
10

]
and λ = .01. Calculations establish that f (x0) =

−4038.1, ∇ f (x0) =

[
−126.904
−117.93

]
, and H f (x0) =

[
23.845 −15.897
−15.897 21.196

]
. When these

values are substituted into the interpolation formula (7.22), we obtain w =[
23.470
24.242

]
. Since f (w) = −7097.364 < f (x0), we set x1 = w, decrease λ, and

repeat the process with x0 replaced by x1.

_ _

Waypoint 7.3.1. Perform the second iteration of the Levenberg
Method for the unconstrained ConPro Manufacturing Company NLP,
using the previously obtained value of x1, together with λ = .005.

_ _

7.3. The Levenberg-Marquardt Algorithm 257

7.3.3 The Levenberg-Marquardt Algorithm

For large values of λ, the Levenberg Method iterates depend primarily upon
the gradient ∇ f . We can incorporate useful second derivative information
without introducing an excessive amount of extra work, insofar as matrix
inversion is concerned, if we replace In in (7.22) with the diagonal matrix

Diag
(
H f (xk)

)
=

∂2 f

∂x2
1

∣∣∣∣
x=xk

0 . . . 0

0
∂2 f

∂x2
2

∣∣∣∣
x=xk

. . . 0

...
. . .

...

0 0 . . .
∂2 f

∂x2
n

∣∣∣∣
x=xk

. (7.24)

Note that Diag
(
H f (xk)

)
utilizes only those entries along the diagonal of

H f (xk).

Substitution of (7.24) for In in (7.22) leads to a new interpolation formula for
computing the trial iterate:

w = xk −
[
H f (xk) + λDiag

(
H f (xk)

)]−1
∇ f (xk). (7.25)

We now introduce a decision process for accepting the trial iterate, one that is
similar to that used for the Levenberg Method, but that depends upon both
an initial damping parameter, λ0, together with a scaling factor, ρ > 1. At each
iteration, we compute the trial iterate using the previous iterate, xk, along
with a value of λ that depends upon λ0, ρ, and k. For many applications,
λ0 = .001 and ρ = 10 will suffice [7]. This new decision process leads to the
Levenberg-Marquardt Algorithm.

The Levenberg-Marquardt Algorithm
To obtain an approximate solution of NLP (7.1) under the assumption f is
twice-differentiable on S:

1. Start with an initial value, x0, in S, an initial damping parameter, λ0,
and a scaling parameter, ρ. For k ≥ 0 do the following:

2. Determine a trial iterate, w, using (7.25) with λ = λk.

3. If f (w) < f (xk), where w is determined in (2), then set xk+1 = w and
λk+1 = λkρ−1. Return to (2), replace k with k+1, and compute a new trial
iterate.

4. If f (w) ≥ f (xk) in (3), determine a new trial iterate, w, using (7.25) with
λ = λk.

5. If f (w) < f (xk), where w is determined in (4), then set xk+1 = w and
λk+1 = λk. Return to (2), replace k with k + 1, and compute a new trial
iterate.

258 Chapter 7. Numeric Tools for Unconstrained NLPs

6. If f (w) ≥ f (xk) in (5), then determine the smallest value of m so that
when a trial iterate, w, is computed using (7.25) with λ = λkρm, then
f (w) < f (xk). Set xk+1 = w and λk+1 = λkρm. Return to (2), replace k with
k + 1, and compute a new trial iterate.

7. Terminate the algorithm when
∥∥∥∇ f (xk)

∥∥∥ < ǫ, where ǫ is a specified
tolerance.

An important observation to make is that in step (3), by setting λk+1 = λkρ−1,
we are emphasizing to a greater extent the Newton Method component in
the interpolation formula (7.25), with the hope that the sequence of iterates
converges to the minimum at a quadratic rate. If our decision-making process
takes us to (6), then setting λk+1 = λkρm > λk signifies we are forced to
emphasize the Steepest Descent Method component in (7.25).

An application of the Levenberg-Marquardt Algorithm to the unconstrained

ConPro Manufacturing Company NLP (7.23) with x0 =

[
10
10

]
, λ0 = .001, ρ = 10,

and tolerance ǫ = .01 yields results shown in Table 7.6.

TABLE 7.6: Results of Levenberg-Marquardt Algorithm applied to the un-
constrained ConPro Manufacturing Company NLP with a tolerance of ǫ = .01,
λ = .0001, and ρ = 10

k xt
k

∥∥∥xk − x⋆
∥∥∥

0 [10, 10] 119.759
1 [28.057, 29.105] 93.527
2 [56.811, 67.711] 51.116396
3 [80.072, 91.034] 12.721
4 [86.736, 100.920] .802
5 [87.111, 101.626] 0.004

Table 7.2 indicates that eight iterations of the Steepest Descent Method are re-
quired to achieve the same level of tolerance. Newton’s Method only requires
five. Thus, for this example the Levenberg-Marquardt Algorithm requires
fewer iterations than the Steepest Descent Method and a number equal to
that of Newton’s Method. It should not come as a surprise then that, under
appropriate conditions, this new algorithm exhibits quadratic convergence
[47].

7.3.4 A Maple Implementation of the Levenberg-Marquardt
Algorithm

The LevenbergMarquardt procedure found in the worksheet Levenberg-
Marquardt Algorithm.mw functions in a manner similar to the

7.3. The Levenberg-Marquardt Algorithm 259

SteepestDescentMethod and NewtonsMethod procedures from Sections 7.1
and 7.2, respectively. However, we must take into account different choices of
the damping parameter and scaling factor. Our procedure call takes the form

LevenbergMarquardt(function,initial,N,tolerance, damp,scale),

where function is a twice-differentiable expression to be minimized, initial
is the initial value, x0, (written as a list), N is the maximum number of it-
erations, tolerance is the specified tolerance, damp is the initial damping
parameter, and scale is the scaling factor. The algorithm terminates when
either the number of iterations is reached or the gradient norm is less than
the desired tolerance. The returned value is the approximate minimum value.
Intermediate iterates leading to the approximate minimum are stored in a list
of points, iterates, a global variable accessible outside of the procedure. In
the procedure, we utilize an auxiliary function, d, that returns formula (7.25)
in terms of an input value, λ, at each iteration.

The following worksheet constructs the procedure and approximates the
minimum of the ConPro objective,

f (x1, x2) = −1400x
1
2

1
x

1
3

2
+ 350x1 + 200x2 using x0 =

[
10
10

]
, N = 5, a tolerance of

ǫ = .01, a damping parameter of .001, and a scaling factor of 10.

> restart: with(VectorCalculus):with(LinearAlgebra):

> LevenbergMarquardt := proc(function, initial, N, tolerance, damp,
scale)

local x,f,d,Delf,Hf, DiagH,lambda,rho,w,j,m,epsilon;

global iterates:

Create local and global variables.

x:=array(0 .. N): # Define array of iterates.

f:=unapply(function, [x1, x2]):

Create function.

Delf:=unapply(Gradient(function, [x1, x2]), [x1, x2]):

Create corresponding gradient function.

Hf:=unapply(Hessian(function, [x1, x2]), [x1, x2]):

Create corresponding Hessian matrix function.

x[0]:=evalf(initial):

Set initial array value.

epsilon := 10:

Set initial epsilon to a large value.

lambda[0]:=damp: rho:=scale:

Set initial damping parameter and scaling factor.

j:=0: while (tolerance <= epsilon and j<=N-1) do

Create loop structure to perform algorithm.

DiagH := DiagonalMatrix(Diagonal(Hf(x[j][1], x[j][2]))):

Create diagonal matrix using Hessian entries.

260 Chapter 7. Numeric Tools for Unconstrained NLPs

d :=r-> convert(-MatrixInverse(Hf(x[j][1], x[j][2])

+r*DiagH).Delf(x[j][1], x[j][2]), list)

Formulate auxiliary function.

w := x[j]+d(lambda[j]/rho);

Create trial solution.

Test for acceptance of first trial solution.

if f(w[1], w[2]) < f(x[j][1], x[j][2]) then x[j+1] := w:

lambda[j+1] := lambda[j]/rho

else w := x[j]+d(lambda[j]);

Test for acceptance of second trial solution.

if f(w[1], w[2]) < f(x[j][1], x[j][2]) then x[j+1] := w:

lambda[j+1]:=lambda[j]

else w := x[j];

If necessary, scale damping factor

until a suitable trial solution found.

m:=1:while f(x[j][1], x[j][2]) <= f(w[1], w[2]) do

w:=x[j]+d(lambda[j]*rhoˆm):

m:= m+1 end do; x[j+1] := w: lambda[j+1]:=lambda[j]*rhoˆm

end if: end if;

epsilon := evalf(Norm(Delf(x[j+1][1], x[j+1][2]), Euclidean));

Update epsilon using gradient.

j:=j+1:

Increase loop index.

end do:

iterates:=[seq(x[i],i=0..j)]:RETURN(x[j]):end:

Construct iterates and return last array value.

> f:=(x1,x2)->-1400x1ˆ(1/2)x2ˆ(1/3)+350x1+200x2;
Enter function

f := (x1, x2)→ −1400x
1
2

1
x

1
3

2
+ 350x1 + 200x2

> LevenbergMarquardt(f(x1, x2), [10,10],5,.01,.001,10);
Procedure call using initial value [10,10], bound of 5 iterations,

tolerance, .00, damping parameter of .001, and scaling factor

of 10.

[87.10975285, 101.6261946]

> iterates;
Print iterates.

[[10., 10.], [28.00148014, 29.04621145], [56.73574951, 61.62388852],

[80.03451430, 90.98472144], [86.73264262, 100.9143105],

[87.10972680, 101.6261320]]

7.3. The Levenberg-Marquardt Algorithm 261

7.3.5 Nonlinear Regression

Levenberg’s original intent was to develop an algorithm well-suited for solv-
ing nonlinear least-squares problems. Specifically, given a set of data pairs,{
(x1, y1), (x2, y2), . . . , (xN, yN)

}
, where each yk is real and each xk belongs to Rn,

we wish to determine a function, f , of a certain type that minimizes the sum
of squared-errors,

N∑

k=1

(
f (xk) − yk

)2 . (7.26)

Generally, we assume that f belongs to a family of functions that are related
by one or more parameters. Multiple linear regression, as discussed in Section
6.3.5, is a particular example.

Unlike the case of multiple linear regression, where (7.26) results in an uncon-
strained NLP whose critical points are determined analytically, minimization
of (7.26) in the nonlinear setting frequently requires a numeric algorithm.

Such was the case for the ConPro Manufacturing Company when it constructed
its production function, which was based upon the data shown in Table 7.7.

TABLE 7.7: Production data for ConPro Manufacturing Company

x1 x2 P(x1, x2)
60 60 29
60 80 36
60 100 34
60 120 37
80 60 36
80 80 38
80 100 41
80 120 47

100 60 35
100 80 45
100 100 47
100 120 47
120 60 46
120 80 48
120 100 47
120 120 54

Recall x1 and x2 denote the number of units of material and labor, respectively,
used to produce P(x1, x2) units of pipe.

A traditional choice from economic theory for modeling production is the

262 Chapter 7. Numeric Tools for Unconstrained NLPs

Cobb-Douglas Production Function,

P(x1, x2) = xα1 x
β

2
, where α, β > 0. (7.27)

To determine the Cobb-Douglas function that best fits the data in Table 7.7,
we minimize the sum of squared-errors

f (α, β) =

16∑

k=1

(
xα1 x

β

2
− P(x1, x2)

)2
, α, β > 0, (7.28)

where the sum is over the sixteen ordered triples (x1, x2,P(x1, x2)) in Table
7.7. If we apply the Levenberg-Marquardt Algorithm, using an initial value

x0 =

[
α0

β0

]
=

[
.5
.5

]
, initial damping factor λ0 = .001, a scaling factor of ρ = 10,

and a tolerance of ǫ = .001, we obtain after five iterates, α ≈ .510 and β ≈ .322.
These values are quite close to those used by ConPro in its actual production
formula.

Figure 7.7 illustrates a plot of the data triples (x1, x2,P) from Table 7.7 along
with the “best-fit” production function P(x1, x2) = x.510

1 x.320
2 .

0
20

40
60

80
100

120
140

20
40

60
80

100
120

140
0

10

20

30

40

50

60

x1

x2

P

FIGURE 7.7: Plot of ConPro Manufacturing Company production data, together
with best-fit Cobb-Douglass function P(x1, x2) = x.510

1 x.320
2 .

An important quantity associated with any regression problem is the coef-
ficient of determination. This quantity lies between 0 and 1 and measures the
proportion of variation of the data accounted for by the best-fit function. If the
data points used for the regression are given by

{
(x1, y1), (x2, y2), . . . , (xm, ym)

}

and if y denotes the mean of {y1, y2, . . . , ym}, this proportion then becomes

∑m
k=1

(
f (xk) − yk

)2

∑m
k=1

(
y − yk

)2
. (7.29)

7.3. Exercises Section 7.3 263

Direct calculation using (7.29) shows that the production function
P(x1, x2) = x.510

1 x.320
2 fits the data in Table 7.7 with a coefficient of determination

equal to .94, thus indicating a strong goodness of fit.

7.3.6 Maple’s Global Optimization Toolbox

The Steepest Descent, Newton, and Levenberg-Marquardt Methods are only
three of many numeric algorithms used to approximate solutions of uncon-
strained NLPs. Their use is limited, however, in that they offer no guarantee
of locating global solutions, local solutions, or even critical points for that
matter.

There is a great deal of ongoing research in the field of global optimization,
and several techniques, which are beyond the scope of this text, have been
developed for solving unconstrained NLPs.

One specific tool developed during the last decade is known as Lipschitz
Global Optimization, or LGO [39]. Implementation of LGO for various software
programs, e.g., Maple and Excel, is now available as an add-on package. In
Maple, for example, the Global Optimization Toolbox package is loaded
using the command with(GlobalOptimization), and the global minimum
is computed using the command GlobalSolve, whose arguments essentially
take the same form as those used for the LPSolve and NLPSolve commands.

A brief review of other various global optimization software packages may be
found in [40]. Three texts devoted to the general topic of global optimization
include [13], [16], [35], and [39].

Exercises Section 7.3

1. Recall Rosenbrock’s banana function from Exercise 2 of Section 7.2,
f (x1, x2) = 100(x2 − x2

1)2 + (1 − x1)2.

(a) Compute the first Levenberg Algorithm iterate, x1 using x0 =

[
−1
0

]
,

N = 5, and each of the following three damping factors:

i. λ = .1

ii. λ = .01

iii. λ = .001

Account for any differences you notice.

(b) Compute the first four Levenberg-Marquardt Algorithm iterates

264 Chapter 7. Numeric Tools for Unconstrained NLPs

using x0 =

[
−1
0

]
, λ0 = .001, and ρ = 10. At each iteration, record the

value of λk.

(c) How many iterations of the Levenberg-Marquardt Algorithm are

necessary before
∥∥∥∇ f (xk)

∥∥∥ < .01? How does this result compare
with the methods of Steepest Descent and Newton?

2. A logistic function frequently models the growth of an organism, which
is initially exponential in nature but is eventually slowed due to one or
more environmental factors. Such growth might be mass, diameter,
height, etc. The general form of such a function can be written as

P(t) =
α

β + e−kt
. (7.30)

where α, β, and k are parameters, with k > 0. A classic example illus-
trating how this nonlinear function models real world data is provided
by the sunflower plant. Table 7.8, for example, displays data showing
sunflower height measured weekly over a period of 12 weeks.

TABLE 7.8: Sunflower growth data

t (days) H (centimeters)
0 0.00
7 17.93

14 36.36
21 67.76
28 98.10
35 131.00
42 169.50
49 205.50
56 228.30
63 247.10
70 250.50
77 253.80
84 254.50

(a) Find the logistic function P of the form given in Equation 7.30
that best fits the data provided in Table 7.8 in the sense of least
squares. That is, determineα, β, and k using Table 7.8 and nonlinear
regression. (Hint: To determine sensible initial values of α, β, and
k, you may wish to graph the data points first, using Maple’s
pointplot command. Then experiment with various values of α,
β, and k. For each choice, use Maple to construct the graph of f from
(7.30). Superimpose this graph on that of the data points and see
if your values of α, β, and k make reasonably good initial choices.)

7.3. Exercises Section 7.3 265

(b) What is the coefficient of determination associated with the best-fit
function you just obtained?

3. In chemical kinetics, if an unstable chemical species spontaneously de-
cays with constant decay probability per unit time interval, its con-
centration C is governed by exponential decay and thus represented
as

C(t) = C0e−kt,

where C0 denotes the initial concentration and k is a constant.1 The
average lifetime of the species is then τ = 1

k . One goal of some chemical
kinetics experiments is to determine the value of τ (or, equivalently, of k.)
Frequently the concentration C itself is not experimentally observable,
but some function Q = aC + b, where a and b are real but unknown
constants, is observable instead. A typical data set therefore consists of
a set of observations of Q at various times t, represented as a sequence
{(t1,Q1), (t2,Q2), . . . , (tm,Qm)}.

(a) Show that
Q(t) = Ae−kt + B, (7.31)

where A and B are constants related to a, b, and C0.

In one experiment, ions in an excited electronic state were suddenly
produced by a pulsed laser. These ions then decayed by emission of
orange light. Since the intensity of the light is proportional to the con-
centration of the excited species, we may choose Q as intensity in (7.31).
A photomultiplier converted this intensity to a signal recorded by an
oscilloscope as a voltage. The result of 25 consecutive signal intensity
samples is shown in Table 7.9.

(b) Find the function (7.31) that best fits the data in the sense of least-
squares. That is, determine A, B, and k using Table 7.9 and nonlinear
regression. Once you have determined A, B, and k, compute, τ, the
average lifetime of the ion, in microseconds.

(c) What is the coefficient of determination associated with the best-fit
function you just obtained?

1Data and background information provided by Professor George McBane, Department of
Chemistry, Grand Valley State University.

266 Chapter 7. Numeric Tools for Unconstrained NLPs

TABLE 7.9: Time-intensity data for pulsed-laser experiment

t (microseconds) Q (millivolts)
0.075 1.90757
0.135 1.40464
0.195 1.31003
0.255 1.14646
0.315 0.967627
0.375 0.785132
0.435 0.702124
0.495 0.605078
0.555 0.516577
0.615 0.387793
0.675 0.443945
0.735 0.337744
0.795 0.259009
0.855 0.188818
0.915 0.204077
0.975 0.150977
1.035 0.0588135
1.095 0.0472168
1.155 0.0520996
1.215 0.0429443
1.275 0.0130371
1.335 0.00327148
1.395 -0.0449463
1.455 -0.0296875
1.515 -0.0333496

Chapter 8

Methods for Constrained Nonlinear
Problems

8.1 The Lagrangian Function and Lagrange Multipliers

Having focused exclusively on unconstrained NLPs in Chapters 6 and 7, we
now turn our attention to the constrained NLP, whose general form is given
by

minimize f (x) (8.1)

subject to

g1(x) ≤ 0

g2(x) ≤ 0

...

gm(x) ≤ 0

h1(x) = 0

h2(x) = 0

...

hp(x) = 0.

We assume that S ⊆ Rn is convex and that all functions are differentiable
mappings from S to R. A constraint involving a function gi, where 1 ≤ i ≤ m,
is of inequality-type, whereas that involving h j, where 1 ≤ j ≤ p, is of equality-
type. In the spirit of linear programming terminology, we say that x ∈ S is a
feasible solution of (8.1) if it satisfies all the constraints.

Our prototype problem is the constrained ConPro Manufacturing Company
NLP introduced in Section 6.1.3. If x1 and x2 denote the number of units
of material and labor, respectively, then the NLP, stated as a minimization
problem, is given by

267

268 Chapter 8. Methods for Constrained Nonlinear Problems

minimize f (x1, x2) = −1400x
1
2

1
x

1
3

2
+ 350x1 + 200x2 (8.2)

subject to

g1(x) = 350x1 + 200x2 − 40000 ≤ 0

g2(x) = x1 − 3x2 ≤ 0

g3(x) = −x1 ≤ 0

g4(x) = −x2 ≤ 0.

We used the objective function to solve the unconstrained ConPro NLP in
Chapters 6 and 7. Constraints reflect the limitation on funds available for
purchasing material and labor, the requirement of adequate labor to produce
pipes from acquired material, and sign restrictions on x1 and x2.

8.1.1 Some Convenient Notation

Let g : S → R
m and h : S → R

p be vector-valued functions defined by

g(x) =

g1(x)
g2(x)
...

gm(x)

and h(x) =

h1(x)
h2(x)
...

hp(x)

. Then (8.1) can be written more compactly

as

minimize f (x) (8.3)

subject to

g(x) ≤ 0

h(x) = 0.

The function g is a vector-valued function whose components are of the type
discussed in Section 6.2. Consequently, we define g to be differentiable at x0 in
S if and only if each component function gi, where 1 ≤ i ≤ m, is differentiable
there. When this occurs, we write

g(x) = g(x0) + Jg(x0)(x − x0) + ‖x − x0‖R(x, x0), (8.4)

where all components of R(x, x0) ∈ Rm tend to 0 as x → x0 and where Jg(x0)
is an m-by-n matrix, called the Jacobian of g evaluated at x0. It is the matrix
whose ith row, 1 ≤ i ≤ m, is given by the gradient vector transpose, ∇gi(x0)t.

The Jacobian matrix yields the linear approximation

g(x) ≈ g(x0) + Jg(x0)(x − x0) for x ≈ x0. (8.5)

8.1. The Lagrangian Function and Lagrange Multipliers 269

Naturally, the preceding analysis can be modified when g is replaced by h, in
which case Jh(x0) is a p-by-n matrix.

In Maple, the Jacobian is computed using the Jacobian command, located in
the VectorCalculus package. Its general form is given by

Jacobian(vector of expressions,variable list),

and it computes the Jacobian of vector of expressionswith respect to the
variables given in variable list. The output of the command is a matrix.
Here is syntax illustrating how to compute the Jacobian of the function g,
where g is formed using the four constraints of the ConPro Manufacturing
Company NLP (8.2). In this example, we construct the Jacobian as a function

of the vector, x =

[
x1

x2

]
.

> with(VectorCalculus):

> g1:=(x1,x2)->350*x1+200*x2-40000:

> g2:=(x1,x2)->x1-3*x2:

> g3:=(x1,x2)->-x1:

> g4:=(x1,x2)->-x2:

> g:=(x1,x2)-><g1(x1,x2),g2(x1,x2),g3(x1,x2),g4(x1,x2)>:g(x1,x2);

(350x1 + 200x2 − 40000)ex1 + (x1 − 3x2)ex2 − x1ex3 − x2ex4

> Jg := unapply(Jacobian(g(x1, x2), [x1, x2]), [x1, x2]): Jg(x1,x2);

350 200
1 −3
−1 0
0 −1

8.1.2 The Karush-Kuhn-Tucker Theorem

Key to solving constrained NLPs is the Lagrangian function, a single function
that incorporates the objective as well as all constraints.

Definition 8.1.1. The Lagrangian function corresponding to NLP (8.1) is the
function L : S ×Rm+p → R defined by

L(x,λ,µ) = f (x) +

m∑

i=1

λi gi(x) +

p∑

j=1

µ jh j(x) (8.6)

= f (x) + λtg(x) + µth(x),

270 Chapter 8. Methods for Constrained Nonlinear Problems

where x belongs to Rn and where λ and µ are vectors in Rm and Rp, respec-

tively, denoted by λ =

λ1

λ2

...
λm

and µ =

µ1

µ2

...
µp

.

Note that in each product, λtg(x) and µth(x), there exists a natural correspon-
dence between each constraint of the NLP (8.1) and a component of λ or µ.
In particular, a constraint of inequality-type (respectively, of equality-type)
corresponds to a component of λ (respectively, to a component of µ).

Our subsequent investigation focuses on the Lagrangian function. Using this
tool, we obtain important information regarding solutions of (8.1). The overall
process closely resembles that from Sections 6.2-6.4 in that we first determine
necessary conditions x0 in Rn to be a solution of (8.1). Then we establish
sufficient conditions for x0 to be a solution of this NLP. These tools, which
were developed in the mid 1900s by Fritz John, William Karush, Harold
William Kuhn, and Albert William Tucker, form the basis of constrained
optimization theory.

Throughout this discussion, unless stated otherwise, we use the notation
∇L(x,λ,µ) to denote the gradient of L with respect to the components of x. A
useful formula that expresses ∇L(x,λ,µ) in terms of the functions that define
L is given by

∇L(x,λ,µ) = ∇ f (x0) +

m∑

i=1

λ0,i∇g j(x0) +

p∑

j=1

µ0, j∇h j(x0) (8.7)

= ∇ f (x) + Jg(x)tλ + Jh(x)tµ.

We now state an important necessary condition, in terms of the Lagrangian,
for a feasible solution of (8.3) to be optimal.

Theorem 8.1.1. Consider the NLP (8.3) and assume that f and all component
functions of g and h are continuously differentiable on S. Suppose that x0 is
a solution of the NLP, and let I denote the set of indices corresponding to
binding inequality constraints. In other words

I =
{
i | 1 ≤ i ≤ m and gi(x0) = 0

}
. (8.8)

Let V be the set of gradient vectors corresponding to both equality constraints
and binding inequality constraints, each of which is evaluated at x0. In other
words,

V =
{∇gi(x0) | i ∈ I

} ∪
{
∇h j(x0) | 1 ≤ j ≤ p

}
.

If V forms a linearly independent set of vectors, a provision we refer to as the

8.1. The Lagrangian Function and Lagrange Multipliers 271

the regularity condition, then there exist unique vectors, λ0 ∈ Rm and µ0 ∈ Rp,
having the following three properties:

λ0 ≥ 0 (8.9)

∇L(x0,λ0,µ0) = ∇ f (x0) + Jg(x0)tλ0 + Jh(x0)tµ0 = 0 (8.10)

λ0,igi(x0) = 0 for 1 ≤ i ≤ m. (8.11)

Theorem 8.1.1 is often referred to as the Karush-Kuhn-Tucker Theorem (or
Karush-Kuhn-Tucker Necessary Conditions Theorem). We omit its proof,
which can be found in more advanced texts [2][4]. Instead, we take a closer
look at its meaning.

1. Entries of the vectors λ0 and µ0 are referred to as the Lagrange multipliers
associated with the NLP (8.3), and the vectors λ0 and µ0 themselves as
the multiplier vectors.

2. Any feasible value x0 for which conditions (8.9)-(8.11) hold is called a
Karush-Kuhn-Tucker, or KKT-point of NLP (8.3). If the regularity condi-
tion also holds at x0, we say the KKT point is regular.

3. The regularity condition cannot be overlooked. If we omit this require-
ment altogether, the multiplier vectors satisfying conditions (8.9)-(8.11)
need not exist in the first place, or, if they do exist, they need not be
unique. Exercises 2 and 3 establish these facts.

4. As a consequence of conditions (8.7), (8.10), and (8.11),

0 = ∇L(x0,λ0,µ0) (8.12)

= ∇ f (x0) + Jg(x0)tλ0 + Jh(x0)tµ0

= ∇ f (x0) +

m∑

i=1

λ0,i∇g j(x0) +

p∑

j=1

µ0, j∇h j(x0)

= ∇ f (x0) +
∑

i∈I

λ0,i∇gi(x0) +

p∑

j=1

µ0, j∇h j(x0).

In other words, ∇ f (x0) is a linear combination of the vectors in V, with
weights determined by the Lagrange Multipliers.

5. An inequality constraint of the form gi(x) ≤ 0 corresponds to the sign
restrictionλ0,i ≥ 0, whereas h j(x) = 0 corresponds to a multiplierµ0, j that
is unrestricted in sign. Results from Section 4.1, such as those summarized
in Table 4.4, suggest an intriguing connection between the multiplier
vectors, λ0 and µ0, and duality.

272 Chapter 8. Methods for Constrained Nonlinear Problems

6. This connection with duality is reinforced if we observe that condition
(8.11) corresponds to the complementary slackness property, Theorem
4.1.4, from Section 4.1. Stated in simple terms, at an optimal solution of
the NLP, x0, which satisfies the theorem’s hypotheses, each multiplier,
λ0,i, is zero, or the corresponding constraint, gi(x), is binding. As a result
of this fact, in subsequent discussions we shall refer to (8.11) as the
complementary slackness conditions. Since λ0,i ≥ 0 and gi(x0) ≤ 0 for
1 ≤ i ≤ m, complementary slackness can be expressed in matrix-vector
form as λ0g(x0) = 0.

To investigate these ideas in the context of a particular example and to un-
derstand how the solution of an NLP determines the Lagrange multiplier
vectors, we consider the ConPro Manufacturing Company NLP (8.2). In the
next section, we establish that the optimal solution is given by

x0 =

[
480/7

80

]
≈

[
68.57

80

]
, (8.13)

with corresponding objective value, f (x0) = −9953.15. Thus, using approx-
imately 68.57 units of material and 80 units of labor, ConPro Manufacturing
Company has a maximum profit of $9953.15, given the constraints dictated in
(8.2). Observe that this solution differs from that of the unconstrained ver-
sion of the problem, which we solved in Section 6.4 and which had solution

x0 =

[
784/9

2744/27

]
≈

[
87.11

101.63

]
with corresponding profit approximately equal to

$10,162.96.

A simple calculation shows that at the optimal solution, only the first con-

straint, g1(x) = 350x1 + 200x2 − 40000 ≤ 0 is binding. Thus, ∇g1(x0) =

[
350
200

]

trivially satisfies the regularity condition, so by (8.11), λ0,2 = λ0,3 = λ0,4 = 0.

The Lagrangian has its gradient given by

∇L(x,λ) = ∇ f (x) + Jg(x)tλ (8.14)

= −

700x
1
3
2√

x1
+ 350

1400
√

x1

3x
2
3
2

+ 200

+

[
350 1 −1 0
200 −3 0 −1

]

λ1

λ2

λ3

λ4

=

− 700x

1
3
2√

x1
+ 350 + 350λ1 + λ2 − λ3

− 1400
√

x1

3x
2
3
2

+ 200 + 200λ1 − 3λ2 − λ4

.

Evaluating ∇L at x0 =

[
784/9

2744/27

]
and λ0,2 = λ0,3 = λ0,4 = 0 and setting each

8.1. The Lagrangian Function and Lagrange Multipliers 273

component of the result to zero, we obtain

λ0,1 =

√
7

120

3
√

80 − 1 ≈ .04. (8.15)

These results demonstrate that at the optimal solution of NLP (8.2),

x0 =

[
784/9

2744/27

]
, with the Lagrange multiplier vector given by λ0 ≈

.04
0
0
0

. In

light of the linear dependence relation spelled out by (8.12), we see that

0 = ∇ f (x0) + Jg(x0)tλ0

= ∇ f (x0) + λ0,1∇g1(x0)

≈ ∇ f (x0) + .04∇g1(x0).

Thus, for the ConPro Manufacturing Company NLP, at the optimal solution, x0

the gradients of f and the first constraint function, g1, are scalar multiples of
one another, where the scaling factor is approximately −.04.

Figure 8.1 illustrates the feasible region for the ConPro Manufacturing Company

NLP, the optimal solution, x0 ≈
[

87.11
101.63

]
, ∇ f (x0), and ∇g1(x0). Vectors have

been scaled for purposes of visualization.

8.1.3 Interpreting the Multiplier

The multiplier, λ0,1 ≈ .04 in the ConPro Manufacturing Company NLP has a
simple economic interpretation. First, observe that the units of the Lagrangian
function in (8.14) are the same as the units of f , namely dollars (of profit).
Since the units of g1, the only binding constraint in the solution, are dollars
(of available funds for material and labor), the units of λ0,1 are dollar of profit
per dollar of available material and labor. Put another way, the multiplier
λ0,1 is the instantaneous rate of change of the objective, f , with respect to
the constraint function, g1. This means that if g1 changes by a small amount,
small enough so that it remains a binding constraint in the new solution, we
should notice the value of f at the optimal solution change by an amount
approximately equal to the change in g1, multiplied by λ0,1.

For example, suppose the funds available to ConPro for material and labor in-
creases by $100 from $40,000 to $40,100. Then the new first constraint becomes
350x1 + 200x2 ≤ 40, 100, or, equivalently, g1 in (8.2) changes to

g1(x) = 350x1 + 200x2 − 40100. (8.16)

In terms of Figure 8.1, such a change corresponds to moving slightly up and

274 Chapter 8. Methods for Constrained Nonlinear Problems

x1

x2

x0∇ f ∇g1

FIGURE 8.1: Feasible region of the ConPro Manufacturing Company NLP illus-
trating objective and constraint gradients at the solution, x0.

to the right the segment on the boundary of the feasible region that passes

through x0 =

[
784/9

2744/27

]
. The multiplier, λ0,1 ≈ .04, indicates, that, under

such a change, we should expect to see the objective value in the solution
of the new NLP to change by ∆ f ≈ .04(−100) = −4. This is a fairly good
approximation, for if we replace the original first constraint by that in (8.16)
and solve the resulting NLP (with Maple), we obtain a new optimal objective
value of −9957.21. This value, less that of f (x0) = −9953.15, is approximately
-4.06. Thus, with $100 more funds available for capital and labor, ConPro ’s
profit increases by a mere $4.06.

In essence, we can view the multiplier as playing a role in sensitivity analysis
when we increase the bound on the right-hand side of a constraint. In fact, if
we recall the concept of a shadow price introduced in Section 4.2.2, we see that
the multiplier generalizes this idea to the nonlinear setting. What is more,
shadow prices in the LP setting equalled the slack variable coefficients in the
top row of the tableau, which in turn corresponded to the decision variables in
the LP’s dual formulation. That Lagrange multipliers are somehow connected
to dual decision variables for an LP becomes the focus of further investigation
in Exercise (5).

8.1. Exercises Section 8.1 275

Exercises Section 8.1

1. Express each of the following NLPs in the forms (8.1) and (8.3). Use the
provided solution to determine the corresponding Lagrange multipli-
ers. Then sketch the feasible region along with the gradients of both f
and the constraint functions evaluated at x0.

(a)

minimize f (x1, x2) = x2
1 − 6x1 + x2

2 − 4x2

subject to

x1 + x2 ≤ 3

x1 ≤ 1

x2 ≥ 0

Solution: x0 =

[
1
2

]

(b)

minimize f (x1, x2) = 4x2
1 − 12x1 − x2

2 − 6x2

subject to

x1 + x2
2 ≤ 2

x1 ≤ 1

2x1 + x2 = 1

Solution: x0 =

[
−1/4
3/2

]

2. Consider the NLP given by

minimize f (x1, x2) = x2
1 − 4x1 + x2

2

subject to

(1 − x1)3 − x2 ≥ 0

x1, x2 ≥ 0,

whose solution is x0 =

[
1
0

]
. Including sign restrictions, this problem has

three constraints.

276 Chapter 8. Methods for Constrained Nonlinear Problems

(a) Verify that the regularity condition does not hold at x0 for this NLP.

(b) Show that there exists no vector λ0 in R3 for which λ0 ≥ 0,
∇L(x0,λ0) = 0, and the complementary slackness conditions hold.
This result demonstrates that the regularity condition in the hy-
pothesis of Theorem 8.1.1 is important for guaranteeing the exis-
tence of the multiplier vectors.

3. Consider the NLP given by

minimize f (x1, x2) = x3
1 − 3x1 + x2

2 − 6x2

subject to

x1 + x2 ≤ 1

x1 + x2
2 + x2 ≤ 2

x1, x2 ≥ 0,

whose solution is x0 =

[
0
1

]
. Including sign restrictions, this problem has

four constraints.

(a) Verify that the regularity condition does not hold at x0 for this NLP.

(b) Construct at least two different multiplier vectors, λ0, in R4 for
which λ0 ≥ 0, ∇L(x0,λ0) = 0, and the complementary slackness
conditions hold. This result demonstrates that the regularity con-
dition in the hypothesis of Theorem 8.1.1 is important for guaran-
teeing the uniqueness of the multiplier vectors.

4. Suppose in (1a) that the right-hand side of the second constraint in-
creases from 1 to 1.1. By approximately how much will the optimal
objective value for the new NLP differ from that of the original prob-
lem? Answer this question without actually solving the new NLP.

5. Consider an LP written in matrix inequality form as

maximize z = ct · x (8.17)

subject to

Ax ≤ b

x ≥ 0.

Here x and c belong to Rn, A is an m-by-n matrix, and b belongs to Rm.

8.1. Exercises Section 8.1 277

(a) Verify that the constraints and sign conditions can be combined
into the single matrix inequality

[
A
−In

]
x −

[
b

0n×1

]
≤ 0(n+m)×1. (8.18)

(b) Viewing the LP as an NLP, construct its Lagrangian function,
L(x,λ), along with ∇L(x,λ), in terms of the given vector and matrix
quantities.

(c) Show that if x0 is an optimal solution of (8.18) then the first m entries
of the Lagrange multiplier vector, λ0, form the solution of the
corresponding dual LP. (Hint: Combine the Karush-Kuhn-Tucker
Theorem with the Complementary Slackness Theorem, Theorem
4.1.4.)

(d) Verify the preceding result by applying it to the FuelPro LP, (4.2).
In this case, λ0 belongs to R5.

(e) The first three entries of λ0 in (d) form the solution of the dual of
(8.18). What is the meaning of the remaining two entries?

6. Recall Pam’s Pentathlon Training Program NLP, as discussed in Exercise
2, from Section 6.1.

maximize f (x1, x2, x3) = .11193(254− (180 − .5x1 − x2 − x3))1.88

+ 56.0211(5.2+ .1x1)1.05

subject to

6 ≤ x1 + x2 + x3 ≤ 10

2 ≤ x1 ≤ 4

3 ≤ x2 ≤ 4

.6x1 − .4x3 ≤ 0

x1, x2, x3 ≥ 0.

The decision variables, x1, x2, and x3, denote the total number of hours
per week Pam devotes to weight lifting, distance running, and speed
workouts, and the constraints give requirements as to how Pam al-
lots her training time. The objective function represents the portion of
Pam’s total pentathlon score stemming from her performances in the
800 meter run and shot put. It is based upon International Amateur
Athletic Federation scoring formulas, together with the fact that Pam
currently completes the 800 meter run in 3 minutes and throws the shot
put 6.7 meters. The NLP has a total of ten constraints, including sign
restrictions.

278 Chapter 8. Methods for Constrained Nonlinear Problems

(a) The solution to this NLP is given by x1 = 2.5, x2 = 3, and x3 =

4.5 hours. Use this information to determine the values of the
ten corresponding Lagrange multipliers. (Hint: First determine
which constraints are nonbinding at the solution. The result, by
complementary slackness, quickly indicates a subset of multipliers
equalling zero.)

(b) If Pam has 30 minutes of more available training time each week,
by approximately how much will her score increase? Answer this
question using your result from (a).

8.2. Convex NLPs 279

8.2 Convex NLPs

Theorem 8.1.1 is useful insofar as guaranteeing the existence of Lagrange
multipliers corresponding to the solution of NLP (8.3) under appropriate
hypotheses. It gives necessary conditions that must hold at a minimum, but
these conditions alone are not sufficient. The following Waypoint provides
an example demonstrating this fact.

_ _

Waypoint 8.2.1. Show that x0 =

[
0
0

]
is a regular KKT point, yet not a

solution of the NLP

minimize f (x) = x2
1 − x2

2

subject to

g1(x) = x1 ≤ 0

g2(x) = x2 ≤ 0.

Then explain why the NLP is unbounded.

_ _

8.2.1 Solving Convex NLPs

The previous Waypoint illustrates that a regular KKT point, x0, is merely a
candidate for a solution. Different means exist for determining whether x0

is also a solution NLP (8.3). One such tool involves convexity. Recall from
Theorem 6.3.1 that if S ⊆ Rn is convex and f : S→ R is differentiable at each
point in S, then f is convex on S if and only if for every x0 in S,

f (x) ≥ f (x0) + ∇ f (x0)t(x − x0) for all x ∈ S. (8.19)

This result, which arose in the context of unconstrained NLPs, is essential for
proving the following theorem.

Theorem 8.2.1. Suppose S ⊆ Rn is convex and that the function f from the
NLP (8.3), as well as each component of g, are continuously differentiable
on S. Assume that f is convex on S, as is each component, gi, of g. Suppose
h(x) = Ax − b for some p by n matrix A and some vector b in Rp. Then any
regular KKT point, x0, of the NLP is a solution.

Remark: An NLP of the form described above is called a convex NLP.

280 Chapter 8. Methods for Constrained Nonlinear Problems

Proof. By Theorem 8.1.1, there exist multiplier vectors, λ0 in Rm and µ in
R

p satisfying conditions (8.9), (8.10), and (8.11). Reordering the inequality
constraints if necessary, we may assume that the first k constraints, where
1 ≤ k ≤ m, are binding at x0. Hence gi(x0) = 0 for 1 ≤ i ≤ k, and, by
complementary slackness, λ0,i = 0 for k + 1 ≤ i ≤ m.

Each function gi is differentiable and convex on S; therefore, Theorem 6.3.1
yields, for 1 ≤ i ≤ k and for all x ∈ S,

∇gi(x0)t(x − x0) ≤ gi(x) − gi(x0) (8.20)

= gi(x)

≤ 0.

Because λ0,i ≥ 0 for all 1 ≤ i ≤ k and λ0,i = 0 for k + 1 ≤ i ≤ m,

λt
0Jg(x0)(x − x0) =

m∑

i=1

λ0,i∇gi(x0)t

 (x − x0) (8.21)

=

m∑

i=1

λ0,i

(
∇gi(x0)t(x − x0)

)

≤ 0.

For equality constraints, we note that Jh(x) = A. Hence, for feasible x,

µt
0Jh(x0)(x − x0) = µt

0(Ax − Ax0) (8.22)

= µt
0 ((Ax − b) − (Ax0 − b))

= 0.

We now combine the results of (8.21) and (8.22), together with (8.10), which
states

∇ f (x0) + Jg(x0)tλ0 + Jh(x0)tµ0 = 0.

Fix x in S. Then, by the convexity of f , along with inequalities (8.21) and
(8.22), we obtain the following:

f (x) − f (x0) ≥ ∇ f (x0)t(x − x0)

= −
(
Jg(x0)tλ0 + Jh(x0)tµ0

)t
(x − x0)

= −
(
λt

0Jg(x0)(x − x0) + µt
0Jh(x0)(x − x0)

)

= −λt
0Jg(x0)(x − x0)

≥ 0.

Thus f (x0) ≤ f (x) for all x ∈ S, so x0 is a solution of NLP (8.3). �

8.2. Convex NLPs 281

Theorem 8.2.1 provides the tools for solving a wide range of problems, in-
cluding the ConPro Manufacturing Company NLP:

minimize f (x1, x2) = −1400x
1
2

1
x

1
3

2
+ 350x1 + 200x2 (8.23)

subject to

g1(x) = 350x1 + 200x2 − 40000 ≤ 0

g2(x) = x1 − 3x2 ≤ 0

g3(x) = −x1 ≤ 0

g4(x) = −x2 ≤ 0.

In this case, S = R2
+ = {(x1, x2) | x1, x2 > 0}. Recall in Section 6.4 that we

established f is convex on S by using Theorem 6.4.3. Each constraint function,
gi(x), from (8.23) is an affine transformation and, hence, is convex on S. (See
Section 6.3.1). Thus (8.23) is a convex NLP, so finding its solution reduces to
finding its regular KKT points.

At x0, the gradient of the Lagrangian must vanish. Hence,

∇L(x0) = ∇ f (x0) +

4∑

i=1

λi∇gi(x0)

= 0.

(8.24)

The complementary slackness conditions require that

λ1g1(x0) = 0

λ2g2(x0) = 0

λ3g3(x0) = 0

λ4g4(x0) = 0.

(8.25)

That ∇L(x) = 0 provides two equations; complementary slackness provides
the remaining four. Hence we must solve a system of six equations in six
unknowns, x1, x2, λ1, λ2, λ3, λ4.

This task is best accomplished using Maple. Here is a sample worksheet,
Computing KKT Points.mw, illustrating how to carry out this process:

> with(VectorCalculus):with(LinearAlgebra):

> f:=(x1,x2)-> -1400*x1ˆ(1/2)*x2ˆ(1/3)+350*x1+200*x2:
Enter objective function.

> g1:=(x1,x2)->350*x1+200*x2-40000:

282 Chapter 8. Methods for Constrained Nonlinear Problems

> g2:=(x1,x2)->x1-3*x2:

> g3:=(x1,x2)->-x1:

> g4:=(x1,x2)->-x2:

> g:=(x1,x2)-><g1(x1,x2),g2(x1,x2),g3(x1,x2),g4(x1,x2)>:g(x1,x2);
Enter vector-valued constraint function.

(350x1 + 200x2 − 40000)ex1 + (x1 − 3x2)ex2 − x1ex3 − x2ex4

> lambda:=<lambda1,lambda2,lambda3,lambda4>:
Create vector of multipliers.

> L:=unapply(f(x1,x2)+Transpose(lambda).g(x1,x2),
[x1,x2,lambda1,lambda2,lambda3,lambda4]):

Create Lagrangian Function.

> LG:=Gradient(L(x1,x2,lambda1,lambda2,lambda3,lambda4),
[x1,x2,lambda1,lambda2,lambda3,lambda4]):

Create Lagrangian Gradient.

> CS:=seq(g(x1,x2)[i]*lambda[i]=0,i=1..4):
Create complementary slackness equations.

> solve({CS, LG[1]=0,LG[2]=0 }, {x1,x2,lambda1,lambda2,lambda3,lambda4});
Solve system of equations to determine KKT point and multipliers.

We have omitted the output produced by the last command, due to the fact
Maple returns several solutions. However, only one of these satisfies the
feasibility conditions along with the sign restriction on the multipliers. The

resulting values are x1 =
480

7
≈ 68.57, x2 = 80, λ1 =

√
7

120

3
√

80 − 1 ≈ .04, and

λ2 = λ3 = λ4 = 0. Thus the sole KKT point is x0 =

[
480
7

80

]
≈

[
68.57

80

]
. Only the

first constraint, g1(x) = 350x1 + 200x2 − 40, 000 ≤ 0, is binding at x0. Thus, the
regularity condition is trivially satisfied, so that x0 is a regular KKT point and,
therefore, is the solution of the ConPro Manufacturing CompanyNLP (8.23).

In this section we have developed a tool for solving a wide range of NLPs. In
the next section, we develop means of solving certain non-convex NLPs.

Exercises Section 8.2

1. For each of the following NLPs, verify that the problem is convex and
then determine its solution.

8.2. Exercises Section 8.2 283

(a)

minimize f (x1, x2) = x2
1 − 6x1 + x2

2 − 4x2

subject to

x1 + x2 ≤ 4

x1 ≤ 1

x2 ≥ 0

(b)

minimize f (x1, x2) = (x1 − 6)2 + (x2 − 4)2

subject to

−x1 + x2
2 ≤ 0

x1 ≤ 4

x1, x2 ≥ 0

(c)

minimize f (x1, x2) = x2
1 − ln(x2 + 1)

subject to

2x1 + x2 ≤ 3

x1, x2 ≥ 0

(d)

minimize f (x1, x2) = 4x2
1 − 12x1 + x2

2 − 6x2

subject to

−x1 + x2
2 ≤ 2

2x1 + x2 = 1

(e)

minimize f (x1, x2) =
1

x1x2

subject to

x1 + 2x2 = 3

x1, x2 > 0

2. Suppose that A is an n-by-n matrix, and define f : Rn → R by
f (x) = xtAx, where x ∈ Rn. Consider the NLP

minimize f (x)

subject to

‖x‖ ≤ 1

284 Chapter 8. Methods for Constrained Nonlinear Problems

Show that the optimal solution occurs at the origin, unless A possesses a
positive eigenvalue. Show that in this latter case, the solution occurs at
the eigenvector, x0, which is normalized to have length one and which
corresponds to the largest eigenvalue, λ. Verify that the corresponding
objective value is given by f (x0) = −λ.

3. A company produces a certain product at two different factories and
delivers the finished product to its two retail outlets.1 Assume that the
product is of the type that can be produced in non-integer quantities. At
factory # 1, the cost of producing s units, in dollars, is given by P1(s) = s2;
at factory # 2 the corresponding cost formula is P2(s) = .8s2. The cost
to ship one product unit from factory # 1 to outlet # 1 is $6 and from
factory # 2 to outlet # 1 is $9. The corresponding costs for outlet # 2 are
$8 and $10, respectively. Assume that the demand at each outlet is at
least 20 units of product. If the company wishes to minimize the sum
of its production and shipping costs, how many units of the product
should be shipped from each factory to each outlet?

1Based upon Sharp, et al., [44], (1970)

8.3. Saddle Point Criteria 285

8.3 Saddle Point Criteria

Unfortunately, many NLPs fail to be convex, in which case a KKT point, x0,
need not be an optimal solution. For example, the NLP given by

minimize f (x) = x2
1 − 6x1 + x2

2 − 4x2 (8.26)

subject to

g1(x) = x2
1 + x2

2 − 9 ≤ 0

g2(x) = x2
1 − x2

2 ≤ 0

g3(x) = x2 − 2 ≤ 0

g4(x) = 2x1 + x2 − 8 ≤ 0,

is a non-convex NLP since g2 is not a convex function. Straightforward calcu-
lations, which we leave as an exercise, show that (8.26) has two KKT points,

x0 =

[
2
2

]
, along with multiplier vector, λ0 =

0
1/2
2
0

, and x0 =

[
1/2
−1/2

]
together

with λ0 =

0
5
0
0

. As we shall discover, only the first of these KKT points forms

a solution to (8.26).

8.3.1 The Restricted Lagrangian

Throughout the ensuing discussion, we assume that x0 is a KKT point of
(8.1) having corresponding multiplier vectors, λ0 and µ0. We may assume, by
relabeling if necessary, that the first k components of g, where 1 ≤ k ≤ m, are
binding at x0. By this, we mean that gi(x0) = 0 for 1 ≤ i ≤ k and gi(x0) < 0 for
k + 1 ≤ i ≤ m. With components of g labeled in this manner, we define the

vector-valued function, g̃ : Rn → Rm given by g̃(x) =

g1(x)
g2(x)
...

gk(x)
0
...
0

.

Note that g̃(x0) = 0 and that, due to complementary slackness conditions,
λ0,i = 0 for k + 1 ≤ i ≤ m.

286 Chapter 8. Methods for Constrained Nonlinear Problems

Definition 8.3.1. The restricted Lagrangian function corresponding to a KKT
point, x0, of NLP (8.1) is the function

L̃(x,λ,µ) = f (x) + λtg̃(x) + µth(x) (8.27)

= f (x) +

k∑

i=1

λi gi(x) +

p∑

j=1

µ jh j(x),

where x belongs to S, λ and µ are vectors in Rm and Rp, respectively, with
λ ≥ 0.

_ _

Waypoint 8.3.1. Calculate the restricted Lagrangian for NLP (8.26) at
each of its two KKT points.

_ _

To understand how the restricted Lagrangian compares to the original, note
that if x is feasible, then λi gi(x) ≤ 0 for λi ≥ 0 and 1 ≤ i ≤ m, so that

L̃(x,λ,µ) = f (x) + λtg̃(x) + µth(x)

= f (x) +

k∑

i=1

λi gi(x) +

p∑

j=1

µ jh j(x)

≥ f (x) +

m∑

i=1

λi gi(x) +

p∑

j=1

µ jh j(x)

= L(x,λ,µ).

Furthermore, suppose x0 is a KKT point of NLP (8.1) with corresponding
multiplier vectors, λ0 and µ0. Since λ0,i = 0 for k + 1 ≤ i ≤ m, Jg̃(x0)tλ0 =

Jg(x0)tλ0. Therefore,

∇̃L(x0,λ0,µ0) = ∇ f (x0) + Jg̃(x0)tλ0 + Jh(x0)tµ0 (8.28)

= ∇ f (x0) + Jg(x0)tλ0 + Jh(x0)tµ0

= ∇L(x0,λ0,µ0)

= 0.

Thus x0 is a KKT point of the L̃ with multiplier vectors λ0 and µ0.

The restricted Lagrangian, L̃ has the special property that if x0 is a KKT
point of NLP (8.1) with corresponding multiplier vectors, λ0 and µ0, then the

gradient of L̃ with respect to all three vector variables, x, λ, and µ, must vanish

8.3. Saddle Point Criteria 287

at (x0,λ0,µ0). In other words, (x0,λ0,µ0) is a critical point of L̃. To see why this
is so, first note from (8.28) that

∂̃L

∂xk

∣∣∣∣∣∣
(x0,λ0,µ0)

= 0 for 1 ≤ k ≤ n. (8.29)

Moreover, since x0 is a feasible solution of NLP (8.1), constraints gi(x) are
binding at x0 for i = 1, 2, . . . , k, so that

∂̃L

∂λi

∣∣∣∣∣∣
(x0,λ0,µ0)

= gi(x0)

= 0 for 1 ≤ i ≤ k.

This result, along with the fact L̃ is independent of λk+1, λk+2, . . . , λm, leads to

∂̃L

∂λi

∣∣∣∣∣∣
(x0,λ0,µ0)

= 0 for 1 ≤ i ≤ m. (8.30)

Finally,

∂̃L

∂µ j

∣∣∣∣∣∣
(x0 ,λ0,µ0)

= h j(x0) (8.31)

= 0 for 1 ≤ j ≤ p.

Combining (8.29), (8.30), and (8.31), we conclude (x,λ,µ) = (x0,λ0,µ0) is a

critical point of L̃.

8.3.2 Saddle Point Optimality Criteria

That the restricted Lagrangian, L̃, has a critical point at (x0,λ0,µ0) proves quite
useful for establishing x0 is a solution of NLP (8.1). The specific conditions
for which this occurs are phrased in terms of the following definition.

Definition 8.3.2. Suppose the triple (x0,λ0,µ0) is a critical point of the re-

stricted Lagrangian, L̃, where x0 is a KKT point of (8.1) with multiplier vec-

tors, λ0 and µ0, where λ0 ≥ 0. Then we say that L̃ satisfies the saddle point
criteria at (x0,λ0,µ0) if and only if

L̃(x0,λ,µ) ≤ L̃(x0,λ0,µ0) ≤ L̃(x,λ0,µ0) (8.32)

for all x in S, all λ in Rm satisfying λ ≥ 0, and all µ in Rp.

288 Chapter 8. Methods for Constrained Nonlinear Problems

We leave it as an exercise to show that for a convex NLP, any triple, (x0,λ0,µ0),
where x0 is a KKT point with corresponding multiplier vectors, λ0 and µ0, is

a saddle point of L̃. Thus a KKT point for a convex NLP is a solution of the
NLP and also corresponds to a saddle point of the restricted Lagrangian.

The following result is significant in that it applies to the non-convex setting
and shows how a KKT point of an NLP, which corresponds to a saddle point
of the restricted Lagrangian, yields a solution of the NLP.

Theorem 8.3.1. Suppose x0 is a KKT point of (8.1) with multiplier vectors, λ0

and µ0. If (x0,λ0,µ0) is a saddle point of L̃, then x0 is a solution of the NLP.

Proof. Assume (x0,λ0,µ0) is a saddle point of L̃ and that x in S is feasible. Then

f (x0) = f (x0) + λtg̃(x0) + µth(x0) (8.33)

= L̃(x0,λ,µ)

≤ L̃(x0,λ0,µ0)

≤ L̃(x,λ0,µ0)

= f (x) + λt
0g̃(x) + µt

0h(x)

≤ f (x) (8.34)

Thus x0 is a solution of NLP (8.1). �

To test whether a KKT point and its multiplier vectors satisfy the saddle point

criteria, we first define φ(x) = L̃(x,λ0,µ0) and establish that φ(x0) ≤ φ(x) for
all feasible x in S. For when this holds, feasibility requirements along with
the condition λ ≥ 0, yield

L̃(x,λ0,µ0) ≥ L̃(x0,λ0,µ0)

= f (x0) + λt
0g̃(x0) + µt

0h(x0)

≥ f (x0) + λtg̃(x0) + µth(x0)

= L̃(x0,λ,µ),

which is precisely what it means to say that (x0,λ0,µ0) is a saddle point of L̃.

We can apply this technique to the non-convex NLP (8.26). At x0 =

[
2
2

]
, the

8.3. Exercises Section 8.3 289

second and third constraints are binding. Since λ0 =

0
1/2
2
0

, we obtain

φ(x) = L̃(x,λ0)

= f (x) +
1

2
g2(x) + 2g3(x)

=
3

2
x2

1 − 6x1 +
1

2
x2

2 − 2x2 − 4.

An elementary exercise establishes that ∇φ vanishes precisely at x0 =

[
2
2

]
and

that the Hessian of φ is constant and positive definite. Thus, φ has a global
minimum at x0 so that x0 is a solution of NLP (8.26).

At the second KKT point, x0 =

[
1/2
−1/2

]
, only the second constraint is binding.

In this case, φ(x0) = x2
1
− x2

2
has a saddle point at x0. Thus, we may not

conclude x0 is also a solution of NLP (8.26). In fact, f
(

1

2
,−1

2

)
= −.5, whereas

f (2, 2) = −12.

Exercises Section 8.3

1. For each of the following NLPs, explain why the NLP is not convex.
Then determine the KKT points and corresponding multiplier vectors.
Finally, verify that the restricted Lagrangian satisfies the saddle point
criteria. (Note: Determining the KKT points and corresponding multi-
plier vectors can be accomplished using Maple as outlined at the end
of Section 8.2.1.)

(a)

minimize f (x1, x2) = x2
1 − x2

2

subject to

x1 − x2 ≤ 0

x2
1 + x2

2 ≤ 4

x2 ≥ 0

290 Chapter 8. Methods for Constrained Nonlinear Problems

(b)

minimize f (x1, x2) = x1x2

subject to

x2
1 + x2

2 ≤ 1

2x1 + 3x2 ≤ 3

x1 ≥ 0

(c)

minimize f (x1, x2) = x2
2 − 6x1 + x2

2 − 4x2

subject to

x2
1 + x2

2 ≤ 9

x2
1 − x2

2 ≤ 0

2x1 + x2 ≤ 8

x2 ≤ 2

2. Verify that the restricted Lagrangian for the ConPro Manufacturing Com-
panyNLP satisfies the saddle point criteria at its optimal solution.

3. Consider the convex NLP

minimize f (x)

subject to

g1(x) ≤ 0

g2(x) ≤ 0

...

gm(x) ≤ 0,

where f , g1, g2, . . . , gm are each differentiable, convex functions defined
on some convex set S ⊆ Rn. In this problem, we show that if x0 is a KKT
point with corresponding multiplier vector, λ0, then (x0,λ0) is a saddle
point of the restricted Lagrangian. In other words, we establish the two
inequalities that comprise (8.32).

(a) Suppose that λ is a vector in Rm having nonnegative components

λi, where 1 ≤ i ≤ m. To show that L̃(x0,λ) ≤ L̃(x0,λ0), first express

the difference L̃(x0,λ,µ) − L̃(x0,λ0,µ0) in terms of f , g1, g2, . . . , gm

and the components of λ and λ0.

8.3. Exercises Section 8.3 291

(b) To establish that L̃(x0,λ0) ≤ L̃(x,λ0), start by expressing the differ-

ence L̃(x0,λ0)− L̃(x,λ0) in terms of f , g1, g2, . . . , gm and the Lagrange
multipliers, λ0,1, λ0,2, . . . λ0,m.

(c) Now apply Theorem 6.3.1 to each of the functions f , g1, g2, . . . , gm

from (c) in order to show that

L̃(x0,λ0) − L̃(x,λ0) ≤ −
(
∇ f (x0)t + Jg(x0)tλ0

)
(x − x0).

(d) Finally, apply Equation (8.10) to the right-hand side of the previous
inequality.

292 Chapter 8. Methods for Constrained Nonlinear Problems

8.4 Quadratic Programming

Many real-world nonlinear programming problems are quadratic in nature.
In this section we develop develop a framework for solving such problems.

8.4.1 Problems with Equality-type Constraints Only

A quadratic programming problem is written in matrix form as follows:

minimize f (x) =
1

2
xtQx + ptx (8.35)

subject to

Ax = b

Cx ≤ d,

where x belongs toRn, Q is a symmetric n-by-n matrix, A is an m-by-n matrix,
C is a p-by-n matrix, and b and d belong to Rm and Rp, respectively.

As a first step towards solving (8.35), we consider the special case when it
has only equality-type constraints. In other words, we seek to solve

minimize f (x) =
1

2
xtQx + ptx (8.36)

subject to

Ax = b.

We will assume that the system of equations Ax = b is consistent and that no
single equation comprising the system is a linear combination of the others.
Therefore, the rows of A must form a linearly independent set of vectors, so
that m ≤ n and any KKT point is regular.

The Lagrangian corresponding to (8.36) is given by

L(x,µ) = f (x) + µt (Ax − b) where µ ∈ Rp. (8.37)

By Theorem 8.1.1, if x0 is a solution of (8.36), then it must be feasible, i.e.,
Ax0 = b, and satisfy

0 = ∇L(x0) (8.38)

= ∇ f (x) + Atµ0

= Qx0 + p + Atµ0

8.4. Quadratic Programming 293

for some µ0 in Rp.

These conditions may be conveniently combined into the form of a partitioned
matrix equation,

[
0m×m A

At Q

] [
µ0
x0

]
=

[
b
−p

]
. (8.39)

In the ideal situation, the matrix Q is positive definite. When this occurs (8.36)
is a convex NLP so that any solution of (8.39) yields a regular KKT point, x0,
which is a solution of (8.36) by Theorem (8.2.1).

When Q is positive definite, the coefficient matrix in (8.39) is invertible. In
particular, if we denote S = −AQ−1At, the inverse is given by

[
0m×m A

At Q

]−1

=

[
S−1 −S−1AQ−1

−Q−1AtS−1 Q−1(Q + AtS−1A)Q−1

]
. (8.40)

The matrix S is called the Schur Complement of Q in the coefficient matrix in
(8.39). That S itself is invertible can be proven using the Spectral Theorem
(Theorem B.7.1).

For example, suppose Q =

2 2 0
2 4 1
0 1 5

, p =

2
−3
0

, A =

[
1 2 2
1 0 0

]
, and b =

[
1
2

]
.

The eigenvalues of Q are positive, so Q is positive definite. The solution of
(8.39) is given by

[
µ0
x0

]
≈

.3929
−5.5357

2
−.4286
−.0714

with corresponding objective value f (x0) ≈ 7.9821.

When Q is not positive definite, the situation becomes somewhat more com-
plicated. In this case, equation (8.39) still remains valid. However, the coef-
ficient matrix need not be invertible and, even if it is, (8.36) is no longer a
convex NLP, so a solution of (8.39) need not yield a solution of the original
problem.

Fortunately, a tool exists for circumventing this problem, one that applies to
many situations. To understand the rationale behind it, we first consider a

simple example. Suppose, in (8.36), that Q =

[
1 2
2 −1

]
, p = 0, A =

[
1 −1

]
,

and b = 1. (For the sake of consistent notation throughout the discussion, we

294 Chapter 8. Methods for Constrained Nonlinear Problems

express b using vector notation even though it is a scalar for this particular
problem.) The feasible region for this NLP consists of the line x1 − x2 = 1 in
R

2. However, the eigenvalues of Q are mixed-sign, so the NLP is not convex.

Figure (8.2) depicts the graph of the objective function, f , a saddle-shaped
surface, along with the image under f of the line x1−x2 = 1, which constitutes
a parabola embedded in the surface.

x1

x2

FIGURE 8.2: Quadratic form, f , together with the image under f of the line
x1 − x2 = 1.

Observe that while the graph of f is saddle-shaped, the restriction of f to
the line x1 − x2 = 1 is an upward-opening parabola. In fact, if we substitute
x2 = x1 − 1 into f (x) = xtQx, we obtain

f (x) = f (x1, x1 − 1)

=

[
x1

x1 − 1

]t

Q

[
x1

x1 − 1

]

=
1

2
x2

1 + 2x1x2 −
1

2
x2

2

= 2x2
1 − x1 − 1

2
,

8.4. Quadratic Programming 295

which is a convex function of x1 and has a minimum at x1 =
1

4
. This value

corresponds to x2 = − 3
4 so that x0 =

[
1/4
−3/4

]
is the solution of (8.36). Observe

this result can also be obtained by solving (8.39), in which case

[
µ0
x0

]
=

−1
1/4
−3/4

 .

Although the calculations are somewhat tedious, we can replicate the pre-

vious steps to show that if Q =

[
q1 q
q q2

]
, p = 0, A =

[
a1 a2

]
, and b ∈ R,

then the restriction of f (x) =
1

2
xtQx to the set of vectors x =

[
x1

x2

]
satisfying

Ax = b is a quadratic expression in x1, whose leading coefficient is given

by
q1a2

2
− 2qa2a1 + q2a2

1

2a2
2

. Thus, as a function of x1 alone, this restriction of f is

convex provided q2
1a2

2 − 2qa2a1 + q2a2
1 > 0. This was the case in our preceding

example, where q1 = 1, q2 = −1, q = 2, a1 = 1, and a2 = −1.

The condition
q2

1
a2

2
− 2qa2a1 + q2a2

1

2a2
2

> 0 can be restated in terms of a determi-

nant identity. Namely, it holds provided

−det

([
0 A

At Q

])
= −det

0 a1 a2

a1 q1 q
a2 q q2

= q2
1a2

2 − 2qa2a1 + q2a2
1

> 0.

The matrix B =

[
0 A

At Q

]
, which is identical to the coefficient matrix in (8.39),

is known as a bordered Hessian. It consists of the Hessian of f , Q in this case,
bordered above by A and to the left by At. In the absence of constraints, B is
simply Q. Thus, the bordered Hessian can be viewed as a generalization of
the normal Hessian to the constrained setting, one that incorporates useful
information regarding the constraints themselves. It is an extremely useful
tool for solving the quadratic programming problem (8.36). However, before
stating a general result that spells out how this is so, we introduce some new
terminology.

Definition 8.4.1. Suppose M is an n-by-n matrix. Then the leading principal

296 Chapter 8. Methods for Constrained Nonlinear Problems

minor of order k, where 0 ≤ k ≤ n, is the determinant of the matrix formed by
deleting the last n − k rows and the last n − k columns of M.

Note that when k = 0, the leading principal minor is just M itself. With this
terminology, we now state a classic result, known as the bordered Hessian test.

Theorem 8.4.1. Assume the quadratic programming problem (8.36) has a

KKT point at x0 with corresponding multiplier vector, µ0. Let B =

[
0 A

At Q

]

denote the corresponding n + m by n + m bordered Hessian formed using Q
and A. Then x0 is a solution of (8.36) if the determinant of B and the last n−m
leading principal minors of B all have the same sign as (−1)m.

The proof of this result can be found in a variety of sources [29]. Instead of
proving it here, we examine its significance in the context of investigating a
particular example.

For example, suppose in (8.36) that Q =

3 −1 0
−1 2 1
0 1 −1

, p =

2
1
0

,

A =
[
1 −1 2

]
, and b = 1.

In this situation, Q is indefinite and the solution to (8.36) is given by

[
µ0
x0

]
=

5/6
−31/24
−25/24

5/8

≈

.8333
−1.2917
−1.0417
.625

.

The bordered Hessian, B, is the 4-by-4 matrix,

B =

0 1 −1 2
1 3 −1 0
−1 −1 2 1
2 0 1 −1

.

Since n = 3 and m = 1, we must compute the determinant of B along with its
last two leading principal minors. The determinant of B is -24. The leading
principal minor corresponding to deletion of the last row and column of B
equals -3, and that corresponding to deletion of the last two rows and columns

8.4. Quadratic Programming 297

equals -1. Since all three determinants have the same sign as (−1)m = −1, we
conclude for this example that the solution of (8.36) is

x0 =

−31/24
−25/24

5/8

≈

−1.2917
−1.0417
.625

 ,

with corresponding multiplier µ0 =
5

6
≈ .8333.

8.4.2 Inequality Constraints

We now consider the case when inequality constraints are present in (8.35).
Assume that x0 is a KKT point for this problem. Each row of the p-by-n matrix
C corresponds to a constraint. Assume k of these constraints are binding. Let
C̃ be the submatrix of C consisting of these k rows, and let d̃ denote the vector
formed using the corresponding k entries of d. Note that

[
A
C̃

]
x0 =

[
b

d̃

]
.

We assume that the rows of

[
A
C̃

]
form a linear independent set of vectors,

implying, as in the previous section, that x0 is regular and m + k ≤ n.

An extension of Theorem 8.4.1, whose proof we also omit, uses the matrix Q

“bordered” by

[
A
C̃

]
and its transpose. Specifically, we form the (m + k + n) by

(m + k + n) bordered Hessian

B =

0m×m 0m×k A
0k×m 0k×k C̃
At C̃t Q

 .

If the last n − (m + k) leading principal minors of B have the same sign as
(−1)m+k, then x0 is a solution of (8.35).

To illustrate this solution process, we solve

minimize f (x) =
1

2
xtQx + ptx (8.41)

subject to

Ax = b

Cx ≤ d,

298 Chapter 8. Methods for Constrained Nonlinear Problems

where Q =

1 2 0
2 4 1
0 1 3

, p =

2
−3
0

, A =

[
1 0 1

]
, b = 2, C =

[
1 2 2
4 1 0

]
, and

d =

[
2
5

]
.

Elementary calculations using methods discussed in Section 8.2.1, establish

(8.41) has a KKT point given by x0 =

5/4
−3/8
3/4

, with corresponding multipliers

λ0 =

[
5/8
0

]
and µ0 = −

25

8
. Using x0, we see that only the first of the two

constraints of the matrix inequality Cx ≤ d is binding, so we set C̃ =
[
1 2 2

]
.

The two rows forming

[
A
C̃

]
are linearly independent, so x0 is regular. The

bordered Hessian is given by

B =

0 0 1 0 1
0 0 1 2 2
1 1 1 2 0
0 2 2 4 1
1 2 0 1 3

(8.42)

Since n = 3, m = k = 1, n − (m + k) = 1 so that we must check that the
determinant of B and the leading principal minor corresponding to deletion
of the last row and column of B have the same sign as (−1)m+k = 1. The values
of the two determinants are given by 24 and 4, respectively, so we conclude

that x0 =

5/4
−3/8
3/4

 is the solution of (8.41).

8.4.3 Maple’s QPSolve Command

Maple’s QPSolve command, located within the Optimization package, pro-
vides a convenient means for solving quadratic programming problems. The
command accepts arguments in the same format as does NLPSolve. How-
ever, an error message results if the function to be minimized is not quadratic
or if any constraint is neither a linear equation nor a linear inequality. The
most convenient way to use this command is to enter constraints in ma-
trix form, in a manner similar to that done for the LPSolve command from
Section 1.1.3. To solve the quadratic programming problem (8.35) having
both equality and inequality constraints, we enter the matrices Q, A, and C
along with the vectors p, b, and d and solve the resulting problem with the
command QPSolve([p,Q],[C,d,A,b]). Note that the matrix and vector con-
straints within the brackets are entered in the order of inequality constraints
first. To solve (8.35) where only inequality-type constraints are present, we

8.4. Quadratic Programming 299

enter QPSolve([p,Q],[C,d])and for the corresponding case of equality-type
constraints, we use QPSolve([p,Q],[NoUserValue,NoUserValue,A,b]). As

an example, consider problem (8.41), where Q =

1 2 0
2 4 1
0 1 3

, p =

2
−3
0

,

A =
[
1 0 1

]
, b = 2, C =

[
1 2 2
4 1 0

]
, and d =

[
2
5

]
.

A Maple worksheet for solving this problem is as follows:

> restart:with(LinearAlgebra):with(Optimization):

> Q:=Matrix(3,3,[1,2,0,2,4,1,0,1,3]):

> p:=<2,-3,0>:

> A:=Matrix(1,3,[1,0,1]):

> b:=<2>:

> C:=Matrix(2,3,[1,2,2,4,1,0]):

> d:=<2,5>:

> QPSolve([p,Q],[C,d,A,b]);

4.3125,

1.25
−.375
.75

Note that p, b, and dmust be entered as vectors using either the <, > notation
or the Vector command. They may not be entered as matrices or as scalars.

One drawback of the QPSolve command is its inability to return the corre-
sponding Lagrange multipliers. To obtain these values, we must use tools
introduced in the context of solving the ConPro problem at the end of Section
8.2.1 and formulate the Lagrangian function. Here is syntax that demon-
strates an efficient means for constructing the Lagrangian corresponding to a
quadratic programming problem, such as (8.41):

> with(VectorCalculus):with(LinearAlgebra):

> Q:=Matrix(3,3,[1,2,0,2,4,1,0,1,3]):

> p:=Matrix(3,1,[2,-3,0]):

> x:=Matrix(3,1,[x1,x2,x3]):

> f:=unapply(1/2*(Transpose(x).Q.x)[1,1]+(Transpose(p).x)[1,1],[x1,x2,x3]):

> A:=Matrix(1,3,[1,0,1]):

> b:=Matrix(1,1,[2]):

> h:=unapply(convert(A.x-b,Vector),[x1,x2,x3]):

> C:=Matrix(2,3,[1,2,2,4,1,0]):

> d:=Matrix(2,1,[2,5]):

> g:=unapply(convert(C.x-d,Vector),[x1,x2,x3]):

300 Chapter 8. Methods for Constrained Nonlinear Problems

> lambda:=<lambda1,lambda2>:

> mu:=<mu1>:

> L:=unapply(f(x1,x2,x3)+(Transpose(lambda).g(x1,x2,x3))
+(Transpose(mu).h(x1,x2,x3),[x1,x2,x3,lambda1,lambda2,mu1]):

Observe the index, [1,1], added to (Transpose(x).Q.x) in the fifth line
of the worksheet. It is required to convert (Transpose(x).Q.x), which
Maple views as a 1-by-1 matrix, to a scalar-valued function. In essence,
the added index, “removes the brackets” so to speak, from the matrix
(Transpose(x).Q.x). For identical reasons, we add brackets, [1,1], imme-
diately after (Transpose(p).x).

Once the Lagrangian, L, has been created, KKT points and corresponding
multipliers can be computed as was done in the ConPro worksheet at the end
of Section 8.2.1.

8.4.4 The Bimatrix Game

In Sections 4.1.5 and 6.4.5 we investigated the topic of zero-sum matrix games
from the perspectives of duality and saddle points of functions, respectively.
A bimatrix game is a generalization of the zero-sum game, one in which each
player has his or her own payoffmatrix.

In this example we assume that Ed’s payoffmatrix is given by

A =

[
1 2
3 1

]
(8.43)

and Steve’s by

B =

[
4 3
3 4

]
. (8.44)

As in the zero-sum game, Ed picks a column, say column j. Simultaneously,
Steve picks a row, call it row i. Then Steve receives an amount equal to the
entry in row i column j of B, and Ed receives an amount equal to the corre-
sponding entry in A. For example, if Steve picks row 1 and Ed chooses column
2, then Ed receives $2 and Steve receives $3. (Whether each player receives
the money from the other or from some third party is inconsequential.)

A pure strategy Nash equilbrium for the bimatrix game is defined in a manner
analogous to that done for the zero-sum case. To determine such equilibria, we
consider the four possible ordered pairs formed by the two column choices
for Ed and the two row choices for Steve. For example, the combination
consisting of Ed choosing column one and Steve choosing row one is not a
pure strategy equilibrium. If Ed recognizes that Steve always chooses row
one, then Ed can increase his earnings by choosing column two provided

8.4. Quadratic Programming 301

Steve continues to follow his own strategy. Similar reasoning applied to other
cases establishes that no pure strategy Nash equilibrium exists.

However, as proven by John Nash in 1951, any bimatrix game is guaranteed
to possess at least one mixed strategy equilbrium [34]. We now determine
such equilibria for Ed and Steve’s contest.

As was the case in Section 4.1, matrix-vector products provide a convenient
means for expressing each game move. To Ed’s choice of column 2 we asso-

ciate the vector

[
0
1

]
and to Steve’s choice of row 1 we associate

[
1
0

]
. Then Ed

and Steve have respective earnings given by

[
1
0

]t

A

[
0
1

]
= 2 and

[
1
0

]t

B

[
0
1

]
= 3.

If Steve’s equilibrium mixed strategy is represented by the vector y0 in R2,
whose entries sum to 1, then Ed seeks to determine the value x, call it x0,
whose entries sum to 1 and which maximizes yt

0Ax. Likewise, Steve wants y0

to be the value of y that maximizes ytBx0. If z0 =

[
z0,1

z0,2

]
is the vector recording

Ed and Steve’s corresponding earnings, respectively, then the equilibrium
mixed strategies must satisfy the following conditions:

z0,1 = max
x

{
yt

0Ax | etx = 1 and x ≥ 0
}

(8.45)

and

z0,2 = max
y

{
ytBx0 | ety = 1 and y ≥ 0

}
.

Observe that due to the manner in which equilibrium strategies, x0 and y0, are
defined, if one player deviates from his equilibrium strategy while the second
player continues to follow his own, then the first sees no improvement in his
earnings.

Finding the vector quantities, x0, y0, z0, that satisfy the conditions in (8.45)
can be restated in terms of solving a certain quadratic programming problem.

Namely, the triple,

z0

x0

y0

, constitutes a solution of (8.45) if and only if it is also

302 Chapter 8. Methods for Constrained Nonlinear Problems

a solution of the following:

min
z,x,y

f (z, x, y) = etz − xt(A + B)y (8.46)

subject to

Aty ≤ z1e

Bx ≤ z2e

etx = 1

ety = 1

x, y ≥ 0,

where z =

[
z1

z2

]
. The proof that the solution of (8.46) coincides with that of

(8.45) is beyond the scope of this text and can be found in other sources [27].
We will focus on the connection between this problem and that of the general
quadratic programming model and apply these tools to Ed and Steve’s game.
We will also leave it as an exercise to show that when B = −A, the solutions
of (8.45) and (8.46) are not only identical but also coincide with the solution
of the zero-sum matrix game.

We first express (8.46) in the standard form from (8.35). For the sake of compact
notation, we let w be the vector in R6, whose first two entries we associate to

z, the next two to x, and the last two to y. In other words, w =

z
x
y

.

Now define p =

1
1
0
0
0
0

and

Q =

02×2 02×2 02×2

02×2 02×2 −(A + B)
02×2 −(A + B)t 02×2

Straightforward calculations show that the objective function, f , from (8.46)
is none other than the quadratic function f : R6 → R given by

f (w) =
1

2
wtQw + ptw. (8.47)

We now seek to express the constraints from (8.46) in the form of a matrix

8.4. Quadratic Programming 303

inequality, Cw ≤ d, along with a matrix equation Ew = b. (We use E instead
of A since A already denotes Ed’s payoffmatrix.)

Equality constraints from (8.46) dictate etx = 1 and ety = 1, so we set b = e

and E =

[
0 0 1 1 0 0
0 0 0 0 1 1

]
. The matrix C has 8 rows and 6 columns. Four

of the rows correspond to the sign restrictions −x ≤ 0 and −y ≤ 0. The
remaining four arise from the inequalities, Aty ≤ z1e and Bx ≤ z2e, which can

be rewritten as −z1e +Aty ≤ 0 and −z2e + Bx ≤ 0. Set d = 08×1, M1 =

[
−1 0
−1 0

]
,

and M2 =

[
0 −1
0 −1

]
. Then inequality constraints are summarized through the

inequality Cx ≤ d, where

C =

M1 02×2 At

M2 B 02×2

02×2 −I2 02×2

02×2 02×2 −I2

.

Knowing Q, E, b, and d, we now restate (8.46) in the standard quadratic
program form:

minimize f (w) =
1

2
wtQw + ptw (8.48)

subject to

Ew = b

Cw ≤ d.

304 Chapter 8. Methods for Constrained Nonlinear Problems

_ _

Waypoint 8.4.1. Use Maple’s QPSolve command to verify that the

solution of (8.48) is given by w0 =

5/3
7/2
1/2
1/2
2/3
1/3

. Thus Ed’s equilibrium strat-

egy consists of x0 =

[
1/2
1/2

]
, implying he chooses each column with

equal probability. His earnings are given by z0,1 = 5/3. Steve, on the

other hand, has an equilibrium strategy of y0 =

[
2/3
1/3

]
, meaning he

chooses the first row 2/3 of the time and has earnings of z0,2 = 7/2.
That Steve’s earnings are much larger than Ed’s is intuitively obvious
if we compare the relative sizes of the entries in A and B.

_ _

We can verify these results by applying our newly developed tools for
quadratic programming problems. Using tools for calculating KKT points,
as discussed in Section 8.2, we can verify w0 is the only KKT point of (8.48).
The multiplier vector, λ0, corresponding to the eight inequality constraints is

given by λ0 =

1/6
5/6
1/6
5/6
0
0
0
0

, and that the multiplier vector corresponding to the two

equality constraints is µ0 =

[
11/6
11/3

]
. Only the first four constraints of to Cw ≤ d

are binding. Thus, to apply the bordered Hessian test, we form a submatrix
of C using its top four rows:

C̃ =

[
M1 02×2 At

M2 B 02×2

]
.

It is easy to check that the rows forming

[
E
C̃

]
are linearly independent, so x0 is

regular.

8.4. Exercises Section 8.4 305

The bordered Hessian is the 12-by-12 matrix given by

Bh =

02×2 02×4 E
04×2 04×4 C̃
Et C̃t Q

 .

In this case n = 6 (the number of decision variables), m = 2 (the number
of equality constraints), and k = 4 (the number of binding inequality con-
straints). Since n− (m+ k) = 0, we need only to check that det(B) has the same
sign as (−1)m+k = 1. A quick calculation verifies that det(Bh) = 36 so that the
KKT point w0 is a solution of (8.48).

We end this section by noting that the mixed strategy Nash equilibrium
solution of a bimatrix game need not be unique in general. It can be the case
that (8.46) has multiple solutions. While the value of the objective function,
f , in (8.46) must be the same for all of these, the players’ equilibrium mixed
strategies and corresponding payoffs, as determined by entries of x0, y0, and
z0, may vary.

Exercises Section 8.4

1. Consider the quadratic programming problem given by

minimize f (x1, x2) = 5x2
1 + 4x1x3 + 8x2

2 + x2
3 + x1 + 2x2 − x3

subject to

x1 − x2 + x3 = 1

x1 + 2x2 + x3 = −3.

(a) Rewrite the problem in the standard form (8.35). (Hint: The matrix
Q is simply the Hessian of f .)

(b) Explain why the problem is convex. Then determine its solution
using formula (8.39).

2. Solve each of the following nonconvex, quadratic programming prob-
lems.

(a)

minimize f (x) =
1

2
xtQx + ptx

subject to

Ax = b,

306 Chapter 8. Methods for Constrained Nonlinear Problems

where Q =

1 −2 0
−2 3 1
0 1 3

, p =

[
2
1

]
, A =

[
1 2 −1
4 0 1

]
, and b =

[
1
2

]
.

(b)

minimize f (x) =
1

2
xtQx

subject to

Cx ≤ d,

where Q =

1 −2 0
−2 3 1
0 1 3

, C =

1 2 2
−1 −1 −3
1 1 0

, and d =

1
2
3

.

(c)

minimize f (x) =
1

2
xtQx + ptx

subject to

Ax = b

Cx ≤ d,

where Q =

2 4 0 0
4 7 −2 −1
0 −2 −3 −1
0 −1 −1 0

, p =

2
−3
0
1

. A =

1 2 3 −1
0 −5 4 2
3 1 5 6

,

b =

2
4
3

, C =

[
1 1 1 3
−1 3 1 0

]
and d =

[
1
1

]
.

3. Verify formula (8.49). That is, show that

[
0m×m A

At Q

]−1

=

[
S−1 −S−1AQ−1

−Q−1AtS−1 Q−1(Q +AtS−1A)Q−1

]
, (8.49)

where S = −AQ−1At.

4. An individual’s blood type (A, B, AB, or O) is determined by a pair
of inherited alleles, of which there are three possibilities: A, B, and O,
where A and B are dominant over O. Table 8.1 summarizes the blood
types produced by each allele pair. Note that the allele pairs AO=OA
and BO=OB result in blood types A and B, respectively, due to the
dominate nature of A and B.

Let x =

x1

x2

x3

 be a vector whose entries represent the frequencies of

8.4. Exercises Section 8.4 307

TABLE 8.1: Blood types produced by different allele pairs

First Allele
Second A B O

A AA=A AB AO=A
B BA=AB BB=B BO=B
O OA=A OB=B OO=O

the alleles, A, B, and C, within a certain population. An individual is
heterozygous for blood type if he or she inherits different allele types.
Since

1 = (x1 + x2 + x3)2 = x2
1 + 2x1x2 + 2x1x3 + x2

2 + 2x2x3 + x2
3,

the probability that an individual is heterozygous is then given by
2x1x2 + 2x1x3 + 2x2x3.

Determine the values of x1, x2, and x3 that maximize the preceding
probability by constructing and then solving a quadratic programming
problem of the form (8.35).

5. Consider the special case of the bimatrix game when Steve’s payoff
matrix, B, equals −A. Show that if we identify z1 with w and z2 with −z,
then the solution of (8.46) coincides with that of the zero-sum matrix
game as formulated in Section 4.1.5. (Hint: When B = −A, the objective
in (8.46) reduces to one of minimizing

f (z, x, y) = etz − xt(A + B)y

= etz

= z1 + z2

= w − z,

which is achieved by minimizing w and maximizing z. Show the con-
straints from (8.46) then coincide with the feasibility of x for Ed’s (pri-
mal) LP and y for Steve’s (dual) LP as constructed in Section 4.1.5.)

6. In the game of “chicken” two individuals drive their cars toward one
another at high speeds. If Driver A swerves and Driver B continues
along his or her straight-line path, then Driver B receives recognition for
his bravery and Driver A is deemed a “chicken.” To these outcomes we
associate payoffs of 2 and 0, respectively. Similarly, if Driver B swerves
and Driver A continues along his straight-line path, then Driver A is
considered “brave” and Driver B a “chicken.” If both drivers continue
straight-on, they crash into one another, an outcome we associate with

308 Chapter 8. Methods for Constrained Nonlinear Problems

payoffs of -1 for each driver. Finally, if both drivers swerve, they are each
awarded payoffs of 1 for having the common sense to avoid a collision.

Based upon the rules of the game, we can associate to the two drivers
the following payoffmatrices, where row 1 and column 1 are associated
with continuing straight and row 2 and column 2 to swerving:

A =

[
−1 0
2 1

]
and B =

[
−1 2
0 1

]

Set up and solve a quadratic programming that determines the all Nash
equilibria for the game. There are three. Two are pure strategy equilib-
ria, where one driver always continues driving straight and the other
swerves, and vice versa. The third equilibrium is of mixed-strategy
type in which each driver elects to continue straight or to swerve with
a non-zero probability.

8.5. Sequential Quadratic Programming 309

8.5 Sequential Quadratic Programming

Sequential Quadratic Programming is a powerful, iterative technique for solving
nonlinear programming problems, well-suited for those whose constraints
are nonlinear.

8.5.1 Method Derivation for Equality-type Constraints

An important connection exists between Newton’s method and sequential
quadratic programming. To best understand the nature of this connection,
we first develop the technique in the case of equality-type constraints. Thus,
we focus on the problem

minimize f (x) (8.50)

subject to

h1(x) = 0

h2(x) = 0

...

hp(x) = 0,

where f and each h j, 1 ≤ j ≤ p, is a twice-differentiable function having
domain S ⊆ Rn. In compact form, (8.50) becomes

minimize f (x) (8.51)

subject to

h(x) = 0,

where h : S→ Rp is the vector-valued function defined by h(x) =

h1(x)
h2(x)
...

hp(x)

.

In a nutshell, to solve (8.51), we will apply Newton’s Method to the associated
Lagrangian function. At each iteration, we solve a quadratic programming
problem. The matrix associated with the objective function is the Hessian
of the Lagrangian. Constraints are formulated using the gradient of L, the
Jacobian of h, and h itself.

The Lagrangian function, L, associated with (8.51) is given by

L(x,µ) = f (x) + µth(x), (8.52)

310 Chapter 8. Methods for Constrained Nonlinear Problems

where x ∈ S and µ ∈ Rp.

Recall results (8.29) and (8.29) from Section 8.3. These demonstrated that if x0

is a KKT point of NLP (8.51) with corresponding multiplier vector, µ0, then
the gradient of L with respect to both vector variables, x and µ, vanishes at
(x0,µ0). In other words, (x0,µ0) is a critical point of L.

The nature of this critical point provides information useful for solving (8.51).
If this critical point is a minimum of L on S ×Rp, then for all feasible x in S,

f (x0) = f (x0) + µt
0h(x0) (8.53)

= L(x0,µ0)

≤ L(x,µ0)

= f (x) + µt
0h(x)

= f (x).

Hence, x0 is a solution of (8.51). For many examples, such as the ConPro Manu-
facturing CompanyNLP, (x0,µ0) is not a minimum of L, but instead corresponds
to a saddle point, as defined in Section 8.3. Fortunately, Theorem 8.3.1 tells us
that this is also a sufficient condition for x0 to be a solution of (8.51).

One means of estimating the critical point, (x0,µ0), is to apply Newton’s

Method to L. Suppose w1 =

[
x1

µ1

]
is our initial value, where x1 belongs to S

and and µ1 belongs to Rp. Denote the Newton direction of L at w1 by

∆w =

[
∆x
∆µ

]
. (8.54)

Determining ∆w requires evaluating at w1 the gradient and Hessian of L
in both vector variables, x and µ. Let ∇L and HL denote these two quanti-
ties, where rows and columns are labeled so that differentiation takes place
with respect to the components of x first. Then straightforward calculations
establish

∇L(x1,µ1) =

[
∇ f (x1) + Jh(x1)tµ1

h(x1)

]
, (8.55)

and

HL(x1,µ1) =

[
HL,x(x1,µ1) Jh(x1)t

Jh(x1) 0p×p

]
. (8.56)

Here we have used HL,x to denote the Hessian of L in x alone. In terms of f

8.5. Sequential Quadratic Programming 311

and h,

HL,x(x1,µ1) = H f (x1) +

p∑

j=1

µ1, jHh j
(x1),

where µ1, j denotes the jth component of µ1.

Using the Newton direction formula, Equation (7.13) from Section 7.2, we
obtain

−
[
HL,x(x1,µ1) Jh(x1)t

Jh(x1) 0p×p

] [
∆x
∆µ

]
=

[
∇ f (x1) + Jh(x1)tµ1

h(x1)

]
. (8.57)

Equation (8.57) bears a resemblance to Equation (8.39) from Section 8.4, which
arose in the context of quadratic programming. To see this connection more
clearly, let us consider the following quadratic subproblem:

minimize
1

2
(∆x)tHL,x(x1,µ1)∆x + (∇ f (x1) + Jh(x1)tµ1)t(∆x) (8.58)

subject to Jh(x1)(∆x) = −h(x1).

For ∆x to be a KKT point of (8.58) with associated multiplier vector, ∆µ,
the feasibility condition must be satisfied, i.e., Jh(x1)(∆x) = −h(x1), and the
gradient of the associated Lagrangian must vanish, or, in other words,

HL,x(x1,µ1)∆x + (∇ f (x1) + Jh(x1)tµ1) + Jh(x1)t∆µ = 0.

But these conditions combine to yield matrix Equation (8.57).

Thus, the values of ∆x and ∆µ can be obtained by solving either the quadratic
subproblem (8.58), or the matrix equation (8.57). Using these values, we obtain

the Newton direction of L at w1 =

[
x1

µ1

]
. Namely, ∆w =

[
∆x
∆µ

]
. Therefore,

w2 = w1 + ∆w so that x2 = x1 + ∆x and µ2 = µ1 + ∆µ. This completes
the first iteration of the Sequential Quadratic Programming Technique. We now
summarize this process.

The Sequential Programming Technique (SQPT) for NLPs with
Equality-type Constraints
To obtain an approximate solution of NLP (8.51) under the assumption that
f and each component of h are twice-differentiable on S:

1. Starting with x1 in S, along with µ1 in Rp, use the solution of (8.58),
which is also the solution of (8.57), to compute ∆x and ∆µ. Of course,

successfully doing so hinges on whether

[
HL,x(x1,µ1) Jh(x1)t

Jh(x1) 0p×p

]
is invert-

ible.

312 Chapter 8. Methods for Constrained Nonlinear Problems

2. Set x2 = x1 + ∆x and µ2 = µ1 + ∆µ.

3. Return to (1), replace x1 and µ1 with x2 and µ2, respectively, and repeat
the process.

4. Terminate the process when the difference between successive iterates,
xk+1 − xk is smaller than some specified tolerance.

Under ideal circumstances, the sequence of iterates,

{
(x1,µ1), (x2,µ2), . . .

}

converges to (x0,µ0), where x0 is a solution of (8.51) having associated multi-
plier vector, µ0.

It is important to recognize that the SQPT, for the case of equality constraints.
generates a sequence of iterates identical to that obtained by applying New-
ton’s Method to the associated Lagrangian function.

To demonstrate this new technique, we consider the NLP

minimize f (x1, x2) = sin(x1 − x2) (8.59)

subject to

x2
1 + x2

2 = 1

The solution of (8.59) can of course be obtained by solving the constraint for
one decision variable, substituting the result into the objective, and minimiz-
ing the resulting function of a single variable. Doing so leads to a solution of

x0 =

[
−1/
√

2

1/
√

2

]
with corresponding objective value f (x0) = − sin(

√
2).

While NLP (8.59) is a very simple example, it is also well suited for demon-
strating our new technique, due to the nature of the objective function and
the nonlinear constraint.

We use as our initial value x1 =

[
1
2

]
and µ1 = 1. (For the sake of consistency

with our previous derivations, we expressµ1 and h using vector notation even
though both are scalar-valued for this particular problem.) The quantities
needed to compute ∆x and ∆µ consist of the following:

1. h(x) = x2
1 + x2

2 − 1

2. ∇ f (x) =

[
cos(x1 − x2)
− cos(x1 − x2)

]

8.5. Sequential Quadratic Programming 313

3. Jh(x) =
[
2x1 2x2

]

4. L(x,µ) = sin(x1 − x2) + µ(x2
1 + x2

2 − 1)

5. HL,x(x,µ) =

[
− sin(x1 − x2) + 2µ sin(x1 − x2)

sin(x1 − x2) − sin(x1 − x2) + 2µ

]

Evaluation of these quantities at x1 =

[
1
2

]
and µ1 = 1 and substitution of the

results into (8.57) yields the following matrix equation:

−

sin(1) + 2 − sin(1) 2
− sin(1) sin(1) + 2 4

2 4 0

[
∆x
∆µ

]
=

cos(1) + 2
− cos(1) + 4

4

 . (8.60)

Solving (8.60), we obtain

[
∆x
∆µ

]
≈

−.7
−.650
−.550

, from which it follows that

x2 ≈ x1 + ∆x

=

[
.3

1.35

]

and µ2 = µ1 + ∆µ ≈ .45.

Table 8.2 provides values of xk and µk for the first seven iterations of the SQPT

applied to NLP (8.59) using x1 =

[
1
2

]
and µ1 = 1.

TABLE 8.2: Results of the Sequential Quadratic Programming Technique ap-
plied to NLP (8.59)

k xt
k

µk
1 [1, 2] 1
2 [.3, 1.35] .45
3 [−.161, 1.115] 1.90
4 [−.474, .949] .095
5 [−.678, .780] .075
6 [−.730, .691] .104
7 [−.706, .708] .110
8 [−.707, .707] .110

The values of xk clearly converge to the solution of (8.59), namely x0 =[
−1/
√

2

1/
√

2

]
. But to what do the values of µk converge? The answer of course is

the corresponding Lagrange multiplier.

314 Chapter 8. Methods for Constrained Nonlinear Problems

_ _

Waypoint 8.5.1. Verify that x0 =

[
−1/
√

2

1/
√

2

]
is a KKT point of (8.59)

with corresponding multiplier, µ0 =
cos(
√

2)√
2

≈ .110. Then use the

NewtonsMethod procedure from Section 7.2.3 to verify that the val-
ues in Table 8.2 coincide with those obtained by applying Newton’s

Method to the Lagrangian, L, using an initial value

[
x1

µ1

]
=

1
2
1

. Note

that the procedure must be modified slightly to reflect the fact the
Lagrangian is a function of three variables, as opposed to two. The
three consist of the two components of x, along with µ.

_ _

8.5.2 The Convergence Issue

The SQPT is based upon Newton’s Method, which, as we discovered in
Section 7.2.4, exhibits a quadratic rate of convergence to the desired minimum,
under appropriate conditions. Table 8.2 exhibits this fast rate of convergence.
At the same time, a numeric technique such as Newton’s Method can generate
a sequence of iterates converging to a critical point that is not a minimum.

It should not come as a surprise then that a sequence of SQPT iterates,{
(x1,µ1), (x2,µ2), . . .

}
, can have the same undesirable property. We can demon-

strate this phenomenon by applying the SQPT to NLP (8.59) using a different

initial value. If x1 =

[
−1
−2

]
and µ1 = −1, then the resulting sequences of it-

erates do not converge to x0 =

[
−1/
√

2

1/
√

2

]
and µ0 =

cos(
√

2)√
2

, respectively.

Instead, the sequence {xk} converges to the second KKT point of NLP (8.59),

x0 =

[
1/
√

2

−1/
√

2

]
, and the sequence

{
µk

}
converges to the corresponding multi-

plier vector, µ0 = −
cos(
√

2)√
2
≈ −.110. Note that while x0 in this case is a KKT

point, it is not a solution of (8.59). Mere comparison of objective values shows
this to be the case, as does an application of the Saddle Point Optimality Test
from Section 8.3.2.

8.5. Sequential Quadratic Programming 315

8.5.3 Inequality-Type Constraints

In the case where only equality-type constraints are present, solving NLP
(8.50) using the SQPT reduces to solving a sequence of quadratic program-
ming problems of the form (8.58), each of which has only equality-type con-
straints.

If an NLP has inequality-type constraints as well, a modification of the Se-
quential Programming Technique requires us to solve at each iteration a
quadratic programming subproblem where inequality-type constraints are
also present. Instead of formally deriving the exact quadratic programming
problem as we did in Section 8.5.1, we instead state the end result.

Suppose we add to NLP (8.51) inequality-type constraints, expressing it as

minimize f (x) (8.61)

subject to

g(x) ≤ 0

h(x) = 0.

Here, g : S → Rm is the vector-valued function each of whose components
are twice-differentiable. The Lagrangian, L, is given by

L(x,λ,µ) = f (x) + λtg(x) + µth(x),

whose Hessian in x we once again denote by HL,x.

Choose x1 in S, λ1 in Rm with λ1 ≥ 0, and µ1 in Rp. Then set x2 = x1 + ∆x,
where ∆x is the solution the following:

minimize
1

2
(∆x)tHL,x(x1,µ1)∆x + ∇ f (x1)t∆x (8.62)

subject to

Jg(x1)(∆x) ≤ −g(x1)

Jh(x1)(∆x) = −h(x1).

The multiplier vectors λ2 and µ2 are assigned the values associated with
the solution of (8.62). Note that this process differs from the situation when
only equality-type constraints were present. There, the multiplier vector was
labeled ∆µ, which we then added to µ1 to obtain µ2.

For example, consider the 3-variable NLP,

316 Chapter 8. Methods for Constrained Nonlinear Problems

minimize f (x1, x2, x3) = x2
1 + 2x2

1x2x3 + x2
2 − x2

3 (8.63)

subject to

x1 + 2x2 − x3 ≤ 2

x2
1 ≥ 1

x2
1 + x2

2 + x2
3 = 4.

We will use as initial values, x1 =

1
2
3

, λ1 =

[
1
1

]
, and µ1 = −1.

Straightforward calculations lead to the following expressions:

1. −g(x) = −
[
x1 + 2x2 − x3 − 2
−x2

1
+ 1

]

2. −h(x) = −
(
x2

1 + x2
2 + x2

3 − 4
)

3. ∇ f (x) =

2x1 + 4x1x2x3

2x2
1
x3 + 2x2

2x2
1
x2 − 2x3

4. Jg(x) =

[
1 2 −1
0 −2x2 0

]

5. Jh(x) =
[
2x1 2x2 2x3

]

6.

L(x,λ,µ) = f (x) + λtg(x) + µth(x)

= x2
1 + 2x2

1x2x3 + x2
2 − x2

3 + λ1 (x1 + 2x2 − x3 − 2)

+λ2

(
−x2

2 + 1
)
+ µ1

(
x2

1 + x2
2 + x2

3 − 4
)

7. HL,x(x,λ,µ) =

2 + 4x2x3 + 2µ1 4x1x3 4x1x2

4x1x3 2 − 2λ2 + 2µ1 2x2
1

4x1x2 2x2
1

−2 + 2µ1

.

Evaluating these quantities at x1, λ1, µ1, we obtain

1. −g(x1) =

[
0
3

]

2. −h(x1) = −10

8.5. Sequential Quadratic Programming 317

3. ∇ f (x1) =

26
10
−2

4. Jg(x1) =

[
1 2 −1
0 −4 0

]

5. Jh(x1) =
[
2 4 6

]

6. HL,x(x1,λ1,µ1) =

24 12 8
12 −2 2
8 2 −4

.

Now we substitute these results into (8.62) and solve the resulting quadratic
programming problem. To find the KKT point and corresponding multipliers,
we could certainly construct the associated Lagrangian and use methods from
Section 8.2.1. In an effort to streamline the solution process, however, we will
first determine the KKT point using the matrix form of Maple’s QPSolve
command. If we enter the preceding quantities in Maple so that items 1,
2, 3, 4, 5, and 6 correspond to d, b, p, C, A, and Q, respectively, then

QPSolve([p,Q], [C,d,A,b]) returns a value of ∆x ≈

−.4000
−.7500
−1.0335

.

While the QPSolve command does not return the multiplier values, we can
obtain them by using ∆x along with the given functions. Substituting ∆x into
each side of the inequality Jg(x1)(∆x) ≤ −g(x1) establishes that the constraint
corresponding to the second row of Jg(x1) is binding. Thus λ2,1, the first
component of λ2, equals zero by complementary slackness.

In the spirit of Section 8.4.2, let us define C̃ to be the submatrix of Jg(x1) formed
using the row corresponding to the second constraint, which is binding. In

this example, C̃ =
[
0 −4 0

]
. Moreover, let d̃ be the subvector of g(x1) =

[
0
3

]

corresponding to the second constraint, i.e., d̃ = −3.

Now consider the matrix equation

HL,x(x1,λ1,µ1) Jh(x1)t C̃t

Jh(x1) 0 0

C̃ 0 0

∆x
µ2
λ2,2

 =

−∇ f (x1)
−h(x1)

−d̃

 . (8.64)

This equation must be satisfied by the triple ∆x,µ2, λ2,2 in order for (8.62) to
have a solution ∆x that yields a non-binding first constraint, i.e., a constraint
for which λ2,1 = 0.

318 Chapter 8. Methods for Constrained Nonlinear Problems

Sinceλ2,1 = 0, we use only the unknown value,λ2,2 in the vector of unknowns.
In this example, substitution of all known quantities into Equation (8.64)
yields

24 12 8 2 0
12 −2 2 4 −4
8 2 −4 6 0
2 4 6 0 0
0 −4 0 0 0

∆x
µ2
λ2,2

 =

−26
−10

2
−10

3

,

from which it follows that ∆x ≈

−.4
−.75
−1.0355

, µ2 ≈ .4268, and λ2,2 ≈ 1.587.

Thus, one iteration of the technique is complete with the results

x2 = x1 + ∆x ≈

.6

1.25
1.9665

, λ2 ≈

[
0

1.587

]
, and µ2 ≈ .4268.

At this point, we repeat the process, returning to (8.62), replacing x1, λ1, and
µ1, with x1, λ1, and µ1, respectively, and so on. The results after only the third

iteration are given by x4 ≈

.003
1.00

1.735

, λ4 =≈

[
0

1.995

]
, and µ4 ≈ 1.011. The exact

values, which can be determined by finding the KKT point and corresponding

multipliers for the original NLP (8.63), are given by x0 =

0
1√
3

, λ0 =

[
0
2

]
, and

µ0 = 1. Thus, a mere three iterations in this case produces quite accurate
results.

8.5.4 A Maple Implementation of the Sequential Quadratic
Programming Technique

The worksheet Sequential Quadratic Programming Technique.mw provides
a systematic means by which to execute the SQPT. Here we use it to complete
the first iteration of NLP (8.63)

> with(VectorCalculus):with(LinearAlgebra):with(Optimization):

> f:=(x1,x2,x3)-> x1ˆ2+2x1ˆ2*x2*x3+x2ˆ2-x3ˆ2:
Enter objective function.

> Delf:=unapply(Gradient(f(x1,x2,x3),[x1,x2,x3]),[x1,x2,x3]):
Gradient of f.

> h:=(x1,x2,x3)-> <x1ˆ2+x2ˆ2+x3ˆ2-4>:
Vector-valued form of equality constraint function.

8.5. Sequential Quadratic Programming 319

> Jh:=unapply(Jacobian(h(x1,x2,x3),[x1,x2,x3]),[x1,x2,x3]):
Jacobian function of h.

> g:=(x1,x2,x3)-><x1+2*x2-x3-2,-xˆ2+1>:
Vector-valued form of inequality constraint functions.

> Jg:=unapply(Jacobian(g(x1,x2,x3),[x1,x2,x3]),[x1,x2,x3]):
Jacobian function of g.

> lambda:=<lambda1,lambda2>:
Create vector of multipliers.

> L:=unapply(f(x1,x2,x3)+Transpose(lambda).g(x1,x2,x3),
+<mu>.h(x1,x2,x3), [x1,x2,x3,mu,lambda1,lambda2]):

Create Lagrangian Function.

> HLx:=unapply(Hessian(L(x1,x2,x3,mu,lambda1,lambda2),[x1,x2,x3]),
[x1,x2,x3,mu,lambda1,lambda2]):

Hessian in x1,x2,x3 of the Lagrangian.

> X1:=1,2,3;mu1:=-1;Lambda1:=1,1;
Initial choices for variables and multipliers. Note Lambda1

is case sensitive since lambda1 has already been defined as a

variable in the Lagrangian.

> Qsol:=QPSolve([Delf(X1),HLx(X1,mu1,Lambda1)],[Jg(X1),-g(X1),Jh(X1),-h(X1)]);
Solve first quadratic subproblem in iteration process.

Qsol :=

−8.1547,

−.3994
−.7500
−1.0335

> Jg(X1).<Qsol[2][1],Qsol[2][2],Qsol[2][3]>+g(X1);
Determine which inequality constraints in solution of subproblem

are binding.

(−.8659)ex + (0)ey

> ∼C:=SubMatrix(Jg(X1),[2],[1,2,3]);
The second constraint is binding, so we form a submatrix of

Jg(X1) using only the second row. Furthermore, we know first

component of Lambda2 is zero by complementary slackness.

∼ C :=
[
0 −4 0

]

> ∼d:=SubVector(g(X1),[2]);
Use entry of Jg(X1) corresponding to binding constraint.

> B:=<<<HLx(X1,mu1,Lambda1)|Transpose(Jh(X1))|Transpose(∼C)>>,
<Jh(X1)|ZeroMatrix(1,2)>,<∼C|ZeroMatrix(1,2)>>;

320 Chapter 8. Methods for Constrained Nonlinear Problems

Create coefficient matrix for finding changes in x1, x2, and

x3, along with new multiplier values.

B :=

24 12 8 2 0
12 −2 2 4 −4
8 2 −4 6 0
2 4 6 0 0
0 −4 0 0 0

> w:=evalf(MatrixInverse(B).<-Delf(X1),-h(X1),-∼ d>);

w :=

−.3994
−.7500
−1.0335
.4268

1.5869

> X2:=X1[1]+w[1,1],X1[2]+w[2,1],X1[3]+w[3,1];
Create X2 using each entry of X1, added to the corresponding

entry in w.

X2 := .6006, 1.2500, 1.9665

> mu2:=w[4,1];
µ2 := .4268

> Lambda2:=0,w[5,1];
Lambda2 has its first entry equal to zero since the first constraint

in the quadratic subproblem was not binding at the solution.

We use the fifth entry of w to form the second component of Lambda2.

Now return to Step 1 and repeat the process again starting at

X2,mu2,Lambda2.

Λ2 = 0, 1.5869

Subsequent iterations are handled in a similar manner.

8.5.5 An Improved Version of the SQPT

Numerous refinements of the SQPT exist, each intended to improve upon
the original method. Perhaps the simplest of these stems from the fact that at
each iteration of the SQPT, the value of xk+1 is obtained by adding the entire
quantity ∆x to xk. While ∆x is the solution of the quadratic subproblem, the
value xk+1 may be no less “infeasible” than was xk if it was infeasible to start
with. Consequently, instead of adding the entire quantity ∆x to xk in order to
obtain xk+1, we should consider adding only a fraction of its value.

The simplest means for carrying out this process is to utilize a decision-
making rule, whereby at each iteration, we choose the fraction of ∆x that best

8.5. Sequential Quadratic Programming 321

decreases the objective value while simultaneously minimizing the “infeasi-
bility error.” This task is accomplished by introducing a new function,

M(x) = f (x) + ρP(x), (8.65)

where P is a penalty function that measures the extent of constraint violation
and where ρ is a fixed, large positive real number. The function, M, is referred
to as a merit function. Corresponding to NLP (8.61), various different choices
exist for P, with one of the most common being

P(x) =

m∑

i=1

max(gi(x), 0)2 +

p∑

j=1

h j(x)2. (8.66)

Here, max denotes the maximum function,

max(x, 0) =

x, if x > 0;

0, otherwise.
(8.67)

Note that if x is feasible for (8.61), then P(x) = 0, and that the value of P
increases with the overall amount of constraint violation.

With this choice of P, the merit function becomes

M(x) = f (x) + ρ

m∑

i=1

max(gi(x), 0)2 +

p∑

j=1

h j(x)2

 . (8.68)

Our decision-making rule is to scale ∆x at each iteration by an amount, t0,
where t0 is the smallest positive local minimum ofφ(t) =M(xk+t∆x). Then we
set xk+1 = xk + t0∆x. However, we continue to determine λk+1 and µk+1 as we
did for the original technique. The new method based upon an appropriate
scaling of∆x, is known as the Merit Function Sequential Programming Technique,
or MSQPT.

To illustrate how this modification is an improvement upon the original

technique, we revisit NLP (8.63). Recall that x1 =

1
2
3

 and that at the end of

the first iteration, ∆x ≈

−.4
−.75
−1.034

. Using ρ = 10, the function φ becomes

φ(t) =M(x1 + t∆x) (8.69)

= f (1 − .4t, 2− .75t, 3− 1.034t)

+ 10

2∑

i=1

max(gi(1 − .4t, 2 − .75t, 3− 1.034t), 0)2 + h(1 − .4t, 2 − .75t, 3− 1.034t)2

 .

322 Chapter 8. Methods for Constrained Nonlinear Problems

Due to the piecewise nature of P, the formula forφ is quite complicated. How-
ever, its graph, shown in Figure (8.3), clearly indicates the desired positive
local minimum.

t

FIGURE 8.3: Graph of φ(t) =M(x1 + t∆x).

A single-variable implementation of Newton’s Method demonstrates that the
minimum occurs at t0 ≈ 1.3062. Thus,

x2 = x1 + t0∆x (8.70)

≈

1
2
3

 + 1.3062

−.4
−.75
−1.034

≈

.478
1.020
1.649

 .

Comparing this value to that obtained using the SQPT, given by

8.5. Exercises Section 8.5 323

x2 = x1+∆x ≈

.6

1.25
1.966

, we see that the MSQPT yields a first iterate significantly

closer to the NLP’s solution of x0 =

0
1√
3

.

The Maple worksheet, Sequential Quadratic Programming Technique.mw,
is easily modified to incorporate use of the merit function. After the objective
and constraint functions, f, g, and h have been defined, the penalty and merit
functions are constructed using the following input:

> P:=unapply(add(piecewise(g(x1,x2,x3)>=0,g(x1,x2,x3)[i]ˆ2,i=1..2)
+h(x1,x2,x3)ˆ2,[x1,x2,x3])):

> M:=unapply(f(x1,x2,x3)+10*P(x1,x2,x3),[x1,x2,x3]):

To account for the scaling of ∆x, we modify the worksheet after the compu-
tation of w as follows:

> w:=evalf(MatrixInverse(B).<-Delf(X1),-h(X1),-(∼ d)>);

w :=

−.3994
−.7500
−1.0335
.4268

1.5869

> phi:=t->M(X1[1]+t*w[1,1],X1[2]+t*w[2,1],X1[3]+t*w[3,1]):
> t0:=NewtonsMethod(phi(t),1,5,.01);
NewtonsMethod procedure modified for a function of one variable,

using an initial value 1, maximum number of five iterations,

and tolerance of .01.

t0 := 1.3062

> X2:=X1[1]+t0*w[1,1],X1[2]+t0*w[2,1],X1[3]+to*w[3,1];

.478 1.020 1.649

Subsequent iterations to are handled in a similar manner.

Exercises Section 8.5

1. For each of the following NLPs, estimate the solution by performing
three iterations of the SQPT using the provided initial values

324 Chapter 8. Methods for Constrained Nonlinear Problems

(a)

minimize f (x1, x2) = x2
1 + 2x1x2x3 − x2

3

subject to

x2
1 + x2

2 + x2
3 = 10

2x1 + x2 − x3 = 1

along with x1 =

−1
1
2

 and µ1 =

[
−2
3

]
. (Verify that your sequence of

values,
{
(x1,µ1), (x2,µ2), . . .

}
, agrees with that obtained by applying

Newton’s Method to the associated Lagrangian function.)

(b)

minimize f (x1, x2) = x2
1 + 2x1 − x1x2 − 3x2

2

subject to

x1 − sin(x2) ≤ 0

2x2
1 + x2 ≤ 1

x2 ≥ 0

along with x1 =

[
1
−1

]
, λ1 =

[
1
1

]
, and µ1 = 1.

Consider the NLP

minimize f (x1, x2) = −x2
1 + x2

2

subject to

2x2
1 + x2

2 = 6.

Solve this NLP and demonstrate, by choosing different initial values,
how it is possible to generate a sequence of SQPT iterates that converges
to a KKT point that is not the solution.

2. Use the SQPT to estimate the solution of the ConPro Manufacturing
CompanyNLP, (6.6).

3. Recall Pam’s Pentathlon Training Program NLP, as discussed in Exercise
2, from Section 6.1.

8.5. Exercises Section 8.5 325

maximize f (x1, x2, x3) = .11193(254− (180 − .5x1 − x2 − x3))1.88

+ 56.0211(5.2+ .1x1)1.05

subject to

6 ≤ x1 + x2 + x3 ≤ 10

2 ≤ x1 ≤ 4

3 ≤ x2 ≤ 4

.6x1 − .4x3 ≤ 0

x1, x2, x3 ≥ 0.

The decision variables, x1, x2, and x3, denote the total number hours
per week Pam devotes to weight lifting, distance running, and speed
workouts, respectively. The objective function represents the portion of
Pam’s total pentathlon score stemming from her performances in the
800 meter run and shot put. It is based upon International Amateur
Athletic Federation scoring formulas, together with the fact that Pam
currently completes the 800 meter run in 3 minutes and throws the shot
put 6.7 meters. Including sign restrictions, the NLP has ten constraints,
which reflect requirements as to how Pam allots her training time.

Use the MSQPT, with initial values x1 =

[
2
2

]
and λ1 = .5e, where e is the

vector inR10 all of whose entries are one, to estimate the solution of this
NLP.

Appendix A

Projects

327

328 Appendix A

A.1 Excavating and Leveling a Large Land Tract

An excavation company must prepare a large tract of land for future construc-
tion.1 The company recognizes the difficulty and lack of aesthetics associated
with leveling the site to form one horizontal plane. Instead, it divides the
site into eight rectangles, with each rectangle assigned to fall in one of three
possible planes, whose equations are to be determined. Rectangles within a
given plane must be pairwise adjacent.

Each plane will be expressed as a function of x and y, and to keep the planes
relatively “flat,” we require that the slopes in both the x- and y-directions are
close to zero. (The actual tolerance will be prescribed as a constraint in the
LP.) In addition, adjacent planes should meet along their edges so as to avoid
“jumps.” This entire process of plane-fitting and leveling is accomplished
through a process of transporting among the various rectangles. The com-
pany’s goal is to minimize the total costs stemming from the digging of dirt,
the filling of dirt, and the transporting of dirt from one rectangle to another.

The eight rectangles and their designated planes are shown in Figure A.1.

Corresponding to rectangle i, 1 ≤ i ≤ 8, is its center (xi, yi) in R2, its area,
Ai, and its average height, hi. The excavation is comprised of three different
types of processes: “cutting,” or digging dirt from a rectangle, which de-
creases the rectangle’s average height; transporting dirt from one rectangle to
another; and, finally, “filling,” or adding dirt to a rectangle, which increases
the rectangle’s average height.

We define the decision variables for this model using the following notation:

• ci, where 1 ≤ i ≤ 8: amount of “cut” from rectangle i, measured in feet.

• fi, 1 ≤ i ≤ 8: amount of “fill” for rectangle i, measured in feet.

• ti j, where 1 ≤ i ≤ 8 and 1 ≤ j ≤ 8: amount of dirt transported from
rectangle i to rectangle j, measured in units of cubic feet, where we
assume tii = 0 for i = 1, 2, . . . , 8.

• a j, 1 ≤ j ≤ 3: the slope in the x-direction of plane j.

• b j, 1 ≤ j ≤ 3: the slope in the y-direction of plane j.

• d j, 1 ≤ j ≤ 3: the vertical axis intercept of plane j.

1Based upon Moreb and Bafail, [33], (1994).

A.1. Excavating and Leveling a Large Land Tract 329

To create an LP with nonnegative decision variables, we rewrite all slopes and
intercepts of the planes as differences of two nonnegative decision variables:

a j = a j1 − a j2, b j = b j1 − b j2, and d j = d j1 − d j2, 1 ≤ j ≤ 3,

where a jk b jk, and d jk is nonnegative for 1 ≤ k ≤ 2 and 1 ≤ j ≤ 3.

Equations for planes can then be created using this notation. For example,

T1(x, y) = a1x + b1 y + d1

= (a11 − a12)x + (b11 − b12)y + (d11 − d12)

represents the equation of the first plane. For the sake of aesthetics, we pre-
scribe that each plane has slopes in the x- and y-directions falling between -.1
and .1.

Costs, in dollars, associated with filling, cutting, and transporting are given
as follows:

• The cost of removing one cubic foot of dirt from any rectangle is $2

• The cost of adding one cubic foot of dirt from any rectangle is $1

• The cost of transporting one cubic foot from one rectangle to another is
$1

1. Construct the objective function for this LP, which consists of total costs
stemming from three sources: the digging of dirt from the rectangles,
the adding of dirt to the rectangles, and the transporting of dirt between
pairs of rectangles.

2. Now formulate a set of constraints for the LP. They arise from the
following requirements:

(a) There is a gap between the original height of each rectangle and the
height of the new plane containing the rectangle. This gap equals
the difference between the fill and cut amounts for the rectangle.
A total of eight equations arises from this condition.

(b) Each rectangle has an area, Ai. The net volume of dirt removed
from that rectangle can be expressed in two ways. The first uses
the quantities Ai, ci, and fi; the other utilizes the family of variables,{
ti j

}
. For example, the volume of dirt added to rectangle one, equals

(t21 − t12) + (t31 − t13) + ... + (t81 − t18),

which can also be expressed in terms of A1, c1, and f1. Eight more
constraints arise from this condition.

330 Appendix A

(c) Six more constraints stem from the requirements that the slopes
a j = a j1 − a j2 and b j = b j1 − b j2, where 1 ≤ j ≤ 3, must fall within
their prescribed lower and upper limits.

(d) The restriction that no gaps exist between planes is fulfilled if
planes 1 and 3 intersect at both (0, 40) and (56, 40), planes 1 and 2
at both (56, 100) and (56, 40), and planes 2 and 3 at (80, 40).

3. Now use Maple to solve the LP that minimizes the objective from (1),
subject to the constraints from (2).

A.1. Excavating and Leveling a Large Land Tract 331

(1) (2)

(3) (4)

(5)

(7)(6)

(8)

x

y

(28,90)

A=1120

h=20

(18,60)

A=1440

h=25

(46,60)

A=800

h=150 (68,53)

A=624

h=5

(25,32)

A=800

h=30

(25,12)

A=1200

h=10

(65,20)

A=1200

h=20

(68,83)

A=816

h=10

(56,100) (80,100)

(80,66)

(80,40)

(50,0)(0,0)

(0,40)

(0,80)

Plane 1

Plane 2

Plane 3

FIGURE A.1: Land tract site consisting of eight rectangles forming three
planes.

332 Appendix A

A.2 The Juice Logistics Model

Transportation problems constitute one of the most common applications of
linear programming. In this project, we investigate a modified version of
one such problem faced by the Welch’s grape processing company in the
early 1990s.2 At that time, Welch’s sought to minimize costs associated with
seasonal fluctuations in grape production, the transport of raw materials
between plants, and storage costs from one growing season to the next. New
policies, based upon linear programming, resulted in a net savings for Welch’s
of more than $130,000 during the first year of adoption.

Assume the company collects “raw,” unprocessed grape juice, hereafter re-
ferred to simply as “juice,” from grape growers at two different plants, labeled
plant 1 (k = 1) and plant 2 (k = 2). The former is located in an urban setting,
the latter in a rural region. The collection process takes place over a 12-month
period, with month i = 1 corresponding to September, when the grape har-
vest is largest. The majority of grapes are collected from growers who belong
to a regional Grape Cooperative Association (GCA). However, during the
winter months, when local harvesting is low, the company frequently seeks
grape sources elsewhere, including overseas.

Simultaneous to the collection of juice at the plants is the processing of two
different products, jam (j = 1) and juice concentrate (j = 2). Company policy
dictates that a minimum percentage of juice must be processed for each
product during a given month at each particular plant. To ensure that enough
juice is on hand, the company is free to transfer juice from one plant to another
during any given month. Because of transportation costs, the company might
be motivated to maintain a large juice inventory at each plant. The drawback
of such a practice, however, is the carryover cost associated with the storage
of unused juice into the next season.

The objective of the company is to minimize costs that stem from three dif-
ferent sources: cost associated with shipping finished products to stores, cost
stemming from moving juice between the two plants, and cost due to storing
juice at each plant.

We define the decision variables for this model using the following notation.
Assume all amounts are measured in tons.

• TSi, j,k, where 1 ≤ i ≤ 12 and 1 ≤ j, k ≤ 2: Amount of product j shipped
to stores from plant k at month i.

2Based upon Schuster and Allen, [43], (1998).

A.2. The Juice Logistics Model 333

• TIi,k,m, where 1 ≤ i ≤ 12 and 1 ≤ k,m ≤ 2: Amount of grape juice
transferred into plant k from plant m during month i. A stipulation, of
course, is that TIi,k,k = 0 for 1 ≤ k ≤ 2 and 1 ≤ i ≤ 12.

• TOi,k,m, where 1 ≤ i ≤ 12 and 1 ≤ k,m ≤ 2: Amount of grape juice trans-
ferred out of plant k and into plant m during month i. Again, we assume
that TOi,k,k = 0 for 1 ≤ k ≤ 2 and 1 ≤ i ≤ 12. This family of decision
variables may not appear necessary since we can interpret negative val-
ues of TIi,k,m as the amount of juice transferred out of plant k and into
plant m, but adding these variables, along with appropriate constraints,
permits us to construct a model in which all decision variables are non-
negative. For example, a negative value of TIi,k,m − TOi,k,m means that
plant k suffers a net loss of juice to plant m, even though each individual
quantity in this difference is nonnegative.

• EIi,k, where 1 ≤ i ≤ 12 and 1 ≤ k ≤ 2: The amount of grape juice
inventory at plant k at end of month i.

Associated with the first three of these four families of variables are various
costs, which are as follows:

• The cost of transporting juice from plant k to the other plant during
month i is $65 per ton.

• Manufacturing costs: For each plant, jam costs $150 per ton to produce
and juice concentrate $175 per ton.

• The cost of storing juice in each plant from one season to the next:
Assume this amount is $500 per ton for either plant.

1. Formulate the objective function for this LP, which consists of the total
cost of manufacturing the two products at the plants, transferring the
juice from one plant to the other, and storing juice from one season to
the next. Your function will involve triple summations.

There are several important quantities that determine the LP’s con-
straints.

• At the start of every year, each plant is required to have 5 tons of
juice on hand.

• The amount of juice delivered to each plant at the start of month i
is approximately

P1(i) = 15
(
1 + sin

(
π

6
i
))

334 Appendix A

for plant 1, and

P2(i) = 50
(
1 + sin

(
π

6
i
))

for plant 2. Note that the delivery amounts can be created as lists
in Maple using the following syntax:

> P1:=[seq(15*(1+sin(Pi*i/6)),i=1..12)]:
> P2:=[seq(50*(1+sin(Pi*i/6)),i=1..12)]:

• At plant 1, 3 tons of juice are required to produce 1 ton of jam. At
plant 2, 4 tons of juice are needed. At either plant, 2 tons of juice
are required to create one ton of juice concentrate.

• Monthly product demands require that at least 10 tons of jam and
15 tons of juice concentrate be produced.

• At most 50 tons can be shipped from one plant to another during
any given month.

• Each plant can produce at most 150 tons of the combined products
each year.

2. Use the decision variables and model parameters to formulate each of
the following families of constraints.

(a) At the end of each year, the juice inventory at each plant must
equal 70 tons.

(b) During each month, the amount transferred into one plant equals
the amount transferred out of the other.

(c) Production of the products at the plants must meet monthly de-
mand.

(d) At most 50 tons can be shipped from one plant to the other during
any given month.

(e) Each plant is limited in how much jam and juice concentrate it can
produce annually.

(f) Each month, the amount of juice transferred into one plant equals
the amount transferred out of the other.

(g) A balance of juice exists from one month to the next.

i. At the end of month 1, the ending inventory at each plant is
the initial inventory of 70, plus the juice transferred in, less
the juice transferred out, less juice lost to production of each
product, plus juice obtained via normal delivery.

A.2. The Juice Logistics Model 335

ii. At the end of month i, where 2 ≤ i ≤ 12, the ending inventory
is that from the previous month, plus the juice transferred in,
less the juice transferred out, less juice lost to production of
each product, plus juice obtained via normal delivery.

3. Now use Maple to solve the LP that minimizes the objective from (1),
subject to the constraints from (2).

336 Appendix A

A.3 Work Scheduling with Overtime

Integer linear programming is frequently used to solve problems related to
scheduling. In this project, we address such a problem, one faced by a state
government seeking to meet prison guard staffing needs at a detention facility,
in as cost-effective manner as possible. 3

Each guard works five consecutive days per week and has the option of
working overtime on one or both of his two days off. The larger the regular
workforce, the more costly to the state are fringe benefit expenditures paid
to the guards. On the other hand, the smaller the workforce, the more the
state pays in overtime wages. The problem then becomes one of determining
the workforce size and method of scheduling that meets staffing needs yet
minimizes labor costs stemming from regular wages, overtime wages, and
fringe benefits.

For the sake of simplicity, we focus on the 8 a.m. to 4 p.m. shift and for the sake
of notational convention, we assume that the days of the week are numbered
so that Monday corresponds to day 1, Tuesday to day 2, etc. Each prison
guard is assigned to work the same 8-hour shift on five consecutive days,
with the option of working the same shift on one or both of his following two
days off. To say that a guard is assigned to work schedule k, means that his
standard work week begins on day k.

We define the decision variables for this model using the following notation:

• xk, where 1 ≤ k ≤ 7: The number of guards assigned to work schedule
k.

• uk, where 1 ≤ k ≤ 7: The number of guards assigned to work schedule
k, who work overtime on their first day off.

• vk, where 1 ≤ k ≤ 7: The number of guards assigned to work schedule
k, who work overtime on their second day off.

Staffing costs stem from wages, both regular and overtime, as well as fringe
benefits and summarized as follows:

• The regular pay rate for guards is $10 per hour, except on Sundays,
when it is $15 per hour instead.

• A guard who works on one or more of his or her two days off is paid at
a rate of $15 per hour on each of those days.

3Based upon Maynard, [31], (1980).

A.3. Work Scheduling with Overtime 337

• Each guard receives fringe benefits amounting to 30% of his or her
regular wages.

1. Construct the objective function for this ILP, which consists of total
staffing costs due to regular wages, overtime wages, and fringe benefits.

2. Now formulate a set of constraints for the ILP. They arise from the
following requirements:

(a) Prison requirements stipulate at least 50 guards be present each
day. The exception to this rule occurs on Sundays when 55 guards
are required during family visitation.

(b) To prevent guard fatigue on any given day, the number of prison
guards working overtime can comprise no more than 25% of the
total staffworking that day.

(c) To provide sufficient opportunities for guards to earn overtime
wages, union rules dictate that on any given day, at least 10% of the
total staffworking that day consists of guards working overtime.

3. Now use Maple to solve the ILP that minimizes the objective from (1),
subject to the constraints from (2).

338 Appendix A

A.4 Diagnosing Breast Cancer with a Linear Classifier

Breast cancer is the most common form of cancer and the second largest cause
of cancer deaths among women. In the mid-1990s a noninvasive diagnostic
tool was developed that can be described in terms of nonlinear program-
ming.4 Researchers use small-gauge needles to collect fluid from both ma-
lignant and benign tumors of a large number of women. With the aid of a
computer program called Xcyt, the boundaries of the cell nuclei are analyzed
and categorized with regard to a number of features, including area, perime-
ter, number of concavities, fractal dimension, variance of grey scale, etc. Mean
values, variance, and other quantities for these attributes are computed, and
ultimately 30 data items for each sample are represented by a vector in R30.

The set of all such vectors constitutes what is known as a “training set.” Our
aim is to construct a hyperplane in R30, using these training vectors, that “best
separates” the training vectors corresponding to benign tumors from those
corresponding to malignant ones. Figure A.2 illustrates this basic concept in
R

2, in which case the hyperplane consists of a line.

ntx + d = 0ntx + d = ǫ

ntx − d = −ǫ

FIGURE A.2: Hyperplane consisting of a solid line that separates two classes
of training vectors, circles and boxes, in R2.

This hyperplane can be used to classify, with a reasonable degree of certainty,
whether a newly collected sample corresponds to a benign or malignant

4Based upon Mangasarian et al., [26], (1994).

A.4. Diagnosing Breast Cancer with a Linear Classifier 339

tumor. Because the model consists of two classes and a hyperplane is used to
separate the data, we refer to this prediction model as a linear classifier.

In this project we will construct the linear classifier by means of solving a
constrained nonlinear programming problem. For the sake of simplicity and
in order to visualize the underlying ideas better, we use 20 data vectors in R3

instead of R30. These vectors are expressed as ordered triples in Table A.1.

TABLE A.1: Training set

i Training Vector, xi yi

1 (7.04, 6.52, 24.4) 1
2 (9.57, 4.42, 23.6) 1
3 (7.00, 8.30, 32.3) 1
4 (7.02, 6.57, 26.5) 1
5 (8.48, 3.62, 17.3) 1
6 (7.7, 5.98, 25.5) 1
7 (7.86, 5.57, 23.7) 1
8 (10.1, 5.97, 31.7) 1
9 (5.10, 5.82, 15.8) 1

10 (9.14, 5.60, 28.7) 1
11 (9.12, 7.33, 29.7) −1
12 (7.29, 6.03, 18.9) −1
13 (7.78, 7.65, 26.3) −1
14 (7.92, 6.67, 27) −1
15 (7.69, 5.37, 19.6) −1
16 (8.54, 5.33, 21.8) −1
17 (9.43, 4.85, 21) −1
18 (6.97, 5.09, 15.9) −1
19 (6.97, 5.7, 17) −1
20 (9.26, 2.84, 14.4) −1

To the training vector, xi, where 1 ≤ i ≤ 20, we associate a value yi ∈ {−1, 1},
where yi = 1 (resp. yi = −1) if that training vector corresponds to a benign
(resp. malignant) tumor.

In R3 the hyperplane takes the form of a plane, n1x1 + n2x2 + n3x3 + d = 0, for
some yet-to-be-determined real quantities, n1, n2, n3, and d. If we write n =

n1

n2

n3

 (the normal vector) and x =

x1

x2

x3

, this equation is identical to ntx + d = 0.

Ideally all malignant tumor vectors fall on one side of this plane and all benign
vectors fall on the other. In this case, there exists some positive constant ǫ such
that ntxi + d ≥ ǫ for 1 ≤ i ≤ 10 and ntxi + d ≤ −ǫ for 11 ≤ i ≤ 20. We can think
of ǫ as the smallest possible distance between any of the training vectors and
the desired plane. It determines two new planes, ntx+ d = ǫ and ntx+ d = −ǫ,

340 Appendix A

as depicted in Figure A.2. The plane, ntx + d = 0, separates these two new
planes and is a distance ǫ from each.

Since yi = 1 for 1 ≤ i ≤ 10 and yi = −1 for 11 ≤ i ≤ 20, the preceding two
families of inequalities may be combined into one and written as

yi

(
ntxi + d

)
≥ ǫ for 1 ≤ i ≤ 20. (A.1)

Of course, by scaling n and d by
1

ǫ
if necessary, we may rewrite (A.1) as

follows:
yi

(
ntxi + d

)
≥ 1 where 1 ≤ i ≤ 20. (A.2)

Thus, the three planes in Figure A.2 can be expressed as

ntx + d = −1, ntx + d = 0, and ntx + d = 1.

1. The margin is defined to be distance between the two planes, ntx+ d = 1
and ntx + d = −1. Because d merely denotes a translation, the margin
is the same as the distance between ntx = 1 and ntx = −1. It is this
quantity that we see to maximize, or equivalently, its reciprocal that

we seek to minimize. Show that the margin equals
2

‖n‖ . (Hint: Choose

arbitrary vectors, x1 and x2, that satisfy ntx1 = 1 and ntx2 = −1. Then
determine the orthogonal projection of x2 − x1 onto n. The magnitude
of this projection is the distance between the two planes.)

It is very unlikely that we can determine a plane that completely “sep-
arates” the benign training vectors from the malignant ones, in which
case the constraints

yi

(
ntxi + d

)
≥ 1 for 1 ≤ i ≤ 20. (A.3)

lead to an infeasible NLP. To address this problem, we relax each con-
straint and rewrite (A.3) as

yi

(
ntxi + d

)
≥ 1 − δi for 1 ≤ i ≤ 20, (A.4)

where δi ≥ 0 denotes the amount of violation in constraint i. The family,
{δi | 1 ≤ i ≤ 20}, together with d and the components of n, then leads to
a total of 24 decision variables for this model, 20 of which we require to
be nonnegative.

Of course, we must ensure the total penalty violation is as small as
possible.

2. Construct a penalty function that is large if the total constraint violation
is large.

A.4. Diagnosing Breast Cancer with a Linear Classifier 341

3. Use Maple to solve the NLP that arises by minimizing the sum of
‖n‖
2

and the penalty function, subject to the constraints in (A.4) together
with the sign restrictions δi ≥ 0 for i = 1, 2, . . . , 20.

4. The solution to your NLP determines the equation of the desired plane.
Use Maple to plot this plane, together with the training vectors. To do
this, create two pointplot3d structures, one for each of the two vec-
tor types. (Specifying different symbols, e.g., symbol=solidcircle and
symbol=solidbox for the two plots will highlight the difference between
the two training vector types.) Then create a third plot structure, this
one producing the separating plane. Combine all three plot structures
with the display command.

5. Suppose two new sample vectors are given by v1 =

10.1
5.97
31.7

 and

v2 =

8.54
5.33
21.8

. Use your newly constructed linear classifier, f : R3 → R

given by f (x) = ntx + d, to classify each of v1 and v2 as corresponding
to benign or malignant vector type.

342 Appendix A

A.5 The Markowitz Portfolio Model

The Markowitz Portfolio Model, created by economist Harry Max Markowitz,
provides a means of maximizing return on an investment portfolio while at
the same time accounting for an investor’s attitude toward risk.5

Suppose we wish to construct a portfolio consisting of four stocks and a
certificate of deposit.

1. Pick four stocks and determine the prices of each over an extended
period of time. For example, you may wish to determine the monthly
closing price of the stock over a period of several years. Various means
exist for acquiring such data. Internet resources, such as Yahoo! Finance,
allows the user to specify the dates of interest for a given stock and
whether the closing prices are to be sampled daily, weekly, or monthly.
Data can then be downloaded in Excel format.

Maple’s ExcelTools package provides the means to import this data
into a Maple worksheet. Suppose closing prices for the first stock have
been saved in cells A1 to A100 of a sheet labeled ”stock1” within the
Excel file, ”stockdata.xls” and that this file is located in the “C:\\Users”
directory. Then the following syntax imports this data into an 100 by 1
array, S:

> with(ExcelTools):
> S:=Import("C:\\Users\\","stockdata.xls","stock1", "A1:A100"):

For each stock, we wish to compute its average rate of return per unit
time period. For example, if the 100 values described above are collected
on the last day of each month, then the rate of return for month j is given
by

r j =
closing price for month j-closing price for month (j − 1)

closing price for month (j − 1)
. (A.5)

2. For each stock you selected, compute the corresponding rates of return.

The mean and variance of a list of numbers, {r1, r2, . . . , rN}, are given by

µ =
1

N

N∑

j=1

r j and σ2 =
1

N

N∑

j=1

(r j − µ)2,

5Based upon Straffin, [45], (1996).

A.5. The Markowitz Portfolio Model 343

respectively. The second of these measures the extent to which the data
deviates from the mean. Thus, a larger variance corresponds to more
“volatility” in the data.

3. For each of the stocks, compute the corresponding mean and variance
of the rates of return. One way to do this in Maple is to create a list of
these rates of return, one list for each stock. The Mean command takes
each list as its argument and computes the corresponding mean. The
Variance command works similarly. Both commands are located in the
Statistics package. (Note: At this stage, it is highly desirable to make
sure at least one of the stocks has a positive mean rate of return. If this is
not the case, then we should replace one of our stocks with one having
this property.)

4. Suppose that, in addition to the four stocks, we wish to include a risk-
free investment in our portfolio, such as a certificate of deposit (CD). If
we use a CD, then we must determine its rate of return per unit time
period, where the time period is the same as that used for the stocks, be
it daily, monthly, etc. Select a CD, whose annual percentage yield (APY)
is known to you. Use the compound interest formula to determine the
rate of return per unit time period that corresponds to this APY. Call
the resulting value, µ5. Then show that the corresponding variance is
zero, which makes sense for a risk-free investment.

With means and variances in hand for the five different investments, we
are now in a position to construct a portfolio. Suppose we let xi, where
1 ≤ i ≤ 5, denote the fraction of our available funds we will devote to
investment i. Given a sense of how much risk we are willing to tolerate,
we seek to determine values of these weights that maximize the return
on our portfolio.

Suppose we had used specific values of these weights to construct a
portfolio for the time period corresponding to the original data. Then
our rate of return of the portfolio for that given time period would have
been

R j = x1r1, j + x2r2, j + x3r3, j + x4r4, j + x5r5, j.

where ri, j denotes the rate of return during time period j for investment
type i. In other words, the daily rate of return for the portfolio would
have been merely the weighted sum of the individual rates of return
of the five investment types. Suppose we assume that the stocks are
diverse enough in nature the rates of return for any pair of them are un-
correlated. Then, elementary statistics dictates that for such a weighted
sum, the portfolio mean and variance of {R1,R2, . . . ,RN} are given by

344 Appendix A

µp = x1µ1 + x2µ2 + x3µ3 + x4µ5 + x5µ5

and

σ2
p = x2

1σ
2
1 + x2

2σ
2
2 + x2

3σ
2
3 + x2

4σ
2
4 + x2

5σ
2
5. (A.6)

While past performance of a stock is no guarantee of how it will fare in
the future, we can still use the mean and variance in (A.6) to estimate
the performance and volatility of a portfolio for a given set of weights.

The goal of the investor is to maximizeµp and, simultaneously, minimize
σ2

p. As these are competing goals, we create a single objective function,
one that seeks to determine weights, x1, x2, x3, x4, x5, that maximize µp

while assigning a penalty to large values of σ2
p. The magnitude of the

penalty is a function of the investor’s risk tolerance. We use the term
risk aversion parameter to describe this quantity and denote it by α.

We therefore seek to solve the following NLP:

maximize f (x1, x2, x3, x4, x5) =

5∑

i=1

xiµi − α
5∑

i=1

x2
i σ

2
i (A.7)

subject to

5∑

i=1

xi = 1

and xi ≥ 0 for 1 ≤ i ≤ 5.

5. The nonlinear programming model (A.7) is a quadratic programming
problem. By defining a new function, f , express it in the standard form:

minimize f (x) =
1

2
xtQx + ptx (A.8)

subject to

Ax = b

Cx ≤ d,

where x belongs to R5 and the remaining matrices and vectors are of
appropriate dimensions. The matrix, Q, is a diagonal matrix depending
upon α and the individual investment variances.

6. Experiment with various risk aversion parameters and solve (A.8) for
each value you choose. Describe what happens to the weights and
objective function value as α increases, and provide an economic inter-
pretation of the nonzero Lagrange multipliers.

A.6. A Game Theory Model of a Predator-Prey Habitat 345

A.6 A Game Theory Model of a Predator-Prey Habitat

In the desert, snakes prey on small rodents in both open and vegetated habi-
tats.6 Should the rodent and snake elect to reside in the same habitat, we ex-
pects the two species to have negative and positive payoffs, respectively, due
to potential inter-species encounters. Similarly, when the rodent and snake
reside in different habitats, the payoffs are positive and negative, respectively.

Let habitats 1 and 2 correspond to the vegetated and open areas. (Hereafter,
we simply refer to the vegetated area as the “bush.”) Corresponding to the
snake, we define the 2-by-2 payoffmatrix A, where [A]i j represents the snake’s
payoffwhen it resides in habitat i and the rodent in habitat j. For the rodent,
we denote its payoff matrix B, where [B]i j denotes the rodent’s payoff when
it resides in habitat i and the snake in habitat j. We expect that the diagonal
entries of A to be nonnegative and those of B nonpositive.

Payoff for each species is defined in terms of dimensionless “energy gains”
or “energy losses,” whose relative sizes reflect the extent to which they affect
a specie’s future reproductive output. Entries for the two payoffmatrices de-
pend upon various parameters, such as probabilities of inter-species encoun-
ters in the two habitats. Table A.2 lists the various parameter and probability
values as estimated by data collected in the field.

TABLE A.2: Field data used to determine payoffmatrices

Quantity Label Value
Energy loss for rodent if captured by snake d 1500
Energy gain for snake if it captures rodent e 1000
Energy required of rodent to live in either habitat α 7
Energy required of snake to live in either habitat β 7
Probability snake captures rodent in the bush Psb .032
Probability snake captures rodent in the open Pso .009
Energy gain for rodent that survives predation
by snake in the bush

ρb 12

Energy gain for rodent that survives predation
by snake in the open

ρo 17

1. Use the values of e, β, Psb, and Pso to construct the snake’s payoffmatrix,
A.

2. Use d, α, Psb, Pso, ρb, and ρo to construct the rodent’s payoffmatrix, B.

6Based upon Bouskila, [9], (2001).

346 Appendix A

3. Determine the mixed strategy Nash equilibrium for this bimatrix game
model of the predator-prey habitat.

4. Suppose the snake’s average payoffmust increase by 10% from its equi-
librium value and that the rodent’s average loss must decrease by 10%.
What fraction of time should each species spend in each habitat to bring
this change about?

Appendix B

Important Results from Linear Algebra

What follows is a list of results from linear algebra that are referenced at
various places in this text. Further elaboration on each of them can be found
in a variety of other sources, such as [15] and [21]. We assume in this list of
results that all matrices have real-valued entries.

B.1 Linear Independence

Suppose that V = {v1, v2, . . . , vn} is a set of vectors in Rm and that A is the
m-by-n matrix having these vectors as columns. Then V is a set of linear
independent vectors if and only if the homogeneous matrix equation Ax = 0
has only the trivial solution, x = 0.

B.2 The Invertible Matrix Theorem

Theorem B.2.1. Suppose that A is an n-by-n matrix. Then the following con-
ditions are logically equivalent.

1. The determinant of A is nonzero.

2. The reduced row echelon form of A is In, the n-by-n identity matrix.

3. A is invertible.

4. The set of column vectors of A and the set of row vectors of A both span
R

n.

5. The set of column vectors of A and the set of row vectors of A both form
linear independent sets.

6. The set of column vectors of A and the set of row vectors of A both form
a basis for Rn.

347

348 Appendix B

7. The homogeneous matrix equation Ax = 0 has only the trivial solution,
x = 0.

8. For every vector b in Rn the matrix equation Ax = b has a unique
solution given by x = A−1b.

9. The column space of A has dimension n and the null space of A has
dimension zero.

10. Zero is not an eigenvalue of A.

B.3 Transpose Properties

The transpose of an m-by-n matrix A, written At, is the n-by-m matrix obtained
by interchanging the rows and columns of A. Important properties of the
transpose include the following:

1.
(
At)t
= A.

2. (A + B)t
= At + Bt, for any other m by n matrix, B.

3. (AB)t
= BtAt, provided the matrix product AB is defined.

4. det
(
At) = det(A).

5. If A is a square, invertible matrix, then so is At, and
(
At

)−1
=

(
A−1

)t
.

6. If u and v are column vectors in Rn, then utv = vtu. In particular, if u is
a column vector in Rn, then utu = ‖u‖2.

7. The Cauchy-Schwartz Inequality:
∣∣∣utv

∣∣∣ ≤ ‖u‖‖v‖ for every pair of col-
umn vectors u and v in Rn, with equality occurring if and only if u and
v are scalar multiples of one another.

8. If A is an n-by-n matrix, then the eigenvalues of AtA are all nonnegative.
For a symmetric matrix, A, AtA = A2. Since each eigenvalue of A2 is
the square of an eigenvalue of A, it follows that the eigenvalues of a
symmetric matrix are all real-valued.

B.4 Positive Definite Matrices

A symmetric, n-by-n matrix, Q, is positive definite if and only if xtQx > 0 for
all x inRn. Equivalently, Q is positive definite if and only if its eigenvalues are

Important Results from Linear Algebra 349

all positive. The matrix Q is positive semidefinite provided xtQx ≥ 0 for all x
in Rn or if all eigenvalues of Q are nonnegative. The terms negative definite
and negative semidefinite are defined analogously.

B.5 Cramer’s Rule

Suppose that A is a square, n-by-n matrix having a nonzero determinant. If

b belongs to Rn and if x =

x1

x2

...
xn

, then the solution to the system of equations

Ax = b can be expressed as

xi =
det(Ai(b))

det(A)
,

where 1 ≤ i ≤ n and where Ai(b) denotes the matrix obtained by replacing
column i of A with the vector b.

B.6 The Rank-Nullity Theorem

Theorem B.6.1. If A is an m-by-n matrix, then the dimension of the column
space of A added to the dimension of the null space of A equals n.

B.7 The Spectral Theorem

Theorem B.7.1. Suppose A is a symmetric matrix having real-valued entries.
Then there exists an n-by-n diagonal matrix, D, and an n-by-n matrix, P,
having the property that A = PDPt. The matrix D can be chosen to have the
eigenvalues of A along its diagonal. The matrix P is then formed using as
its columns the corresponding eigenvectors of A, normalized so as to have
length one. Finally, P is invertible, with P−1 = Pt.

350 Appendix B

B.8 Matrix Norms

Let Mn(R) denote the set of n-by-n matrices having real-valued entries. Then
Mn(R) forms a vector space under the usual operations of matrix addition
and scalar multiplication. A norm on Mn(R) is a function that assigns to each
matrix, A, in this set, a nonnegative real number, ‖A‖. This function must
satisfy the usual properties of a vector space norm:

1. For each A in Mn(R), ‖A‖ ≥ 0, with equality possible only if A is the zero
matrix.

2. For each A in Mn(R) and each real scalar, c, ‖cA‖ = |c|‖A‖.

3. For every A and B in Mn(R), ‖A + B‖ ≤ ‖A‖ + ‖B‖.

4. For every A and B in Mn(R), ‖AB‖ ≤ ‖A‖‖B‖.

The third of these properties is referred to as the triangle inequality; the
last is referred to as the sub-multiplicative property and is analogous to the
Cauchy-Schwartz Inequality for vectors.

While several different matrix norms exist for Mn(R), the one connects the
Euclidean norm of a vector, x, in Rn with that of the matrix-product vector,
Ax is known as the spectral norm. It is defined as

‖A‖ = max
{√
λ | λ is an eigenvalue of AtA

}
.

Note that by the last property from B.3, each eigenvalue in this set is non-
negative. The spectral norm of a matrix A in Mn(R) satisfies the vector-norm
inequality

‖Ax‖ ≤ ‖A‖‖x‖ for all x ∈ Rn.

In other words, multiplication of x by A yields a vector whose length is no
more than that of x, scaled by the matrix norm, ‖A‖.

When A is symmetric, the eigenvalues of AAt are the eigenvalues of A2, and
the spectral norm reduces to ‖A‖ = ρ(A), where ρ(A) is the spectral radius,
or maximum of the absolute values of the eigenvalues of A. Hence, for a
symmetric matrix, A,

‖Ax‖ ≤ ρ(A)‖x‖ for all x ∈ Rn.

Appendix C

Getting Started with Maple

C.1 The Worksheet Structure

Maple is an interactive, mathematical problem solving software package well-
suited for addressing problems that arise in this text. Perhaps this software’s
best feature is its versatility. Capabilities of Maple fall into four broad cate-
gories.

1. Maple has a symbolic computing component. It can manipulate alge-
braic expressions, solve equations exactly, perform calculus and linear
algebra computations, and so on. The list of symbolic computing capa-
bilities is quite extensive.

2. The software has built-in commands for performing numeric computa-
tions, such as those leading to solutions of differential equations.

3. Maple possesses the ability to produce high-quality graphical output,
including those involving functions of one or two variables, implicitly
defined functions, and vector quantities.

4. Maple is a programming language in that it is capable of combining all
its tools in a programming environment that is intuitive in nature and
that requires little to no programming experience.

Maple performs related tasks in what is referred to as a Maple worksheet. Each
worksheet is comprised of command lines starting with > and can be saved
for future using the .mw file name extension. While the input and output of
each worksheet are visible when a previously created file is opened, values
in a worksheet are not saved. Two options exist for re-executing a worksheet:

1. Execute, in the order presented, each command line of the worksheet by
placing the cursor anywhere in that command line and hitting “Enter.”

2. Execute the entire worksheet at once, either by selecting the Edit-
Execute command or by selecting the !!! button at the top of the work-
sheet.

351

352 Appendix C

Maple follows certain conventions and requires the user to observe various
rules. Among those that are most important are the following:

1. Maple is case-sensitive.

2. Every Maple command line ends with either a semicolon (;) or colon (:),
and the command line is executed by hitting the “Enter” key.

3. When a semicolon is used, output from the command is visible to the
user. When a colon is used instead, the command is executed but no
output appears. Using a colon is especially helpful when one wishes
to perform lengthy calculations, whose results are to be used later in a
worksheet but are not important for immediate viewing.

4. Variables and other types of structures are assigned values in Maple
using the colon-equal sign combination. For example, to assign the
value of 2 to the variable a, type a:=2; at the command line.

5. Maple “remembers,” in chronological order, how commands within a
worksheet are executed. For example, if the variable a is assigned the
value of 3 at some command line in the worksheet, and the user executes
a subsequent command line that involves a, this subsequent command
assumes that a = 3. Two means exist to “clear” variable values. To clear
all values in a worksheet, type restart at the first command line and
re-execute the worksheet. To clear a specific variable value, such as a,
type a:=’a’; at the command line.

6. Frequently one wishes to insert additional lines at some point in a
worksheet. If the line to be added is below the current cursor position,
type “CTRL-J.” If the line to be added is above, type “CTRL-K” instead.

7. Maple permits copying and pasting. Short-cut keys for copy and paste
are “CTRL-C” and “CTRL-V,” respectively.

8. Maple provides the means for the user to enter ordinary text using its
“text mode.” To switch to this mode, select the “T” button at the top of
the worksheet or type “CTRL-T.”

9. To add documentation to any line of a worksheet, insert a line of text as
described previously or type, anywhere in the command line, the ”#”
followed by the desired comment. Maple will then ignore all input that
follows # in that line.

10. To learn appropriate syntax and to view examples using a particular
Maple command, type ?command name at the command prompt.

With this general background information in mind, we now focus on using
Maple to perform specific tasks.

Getting Started with Maple 353

C.2 Arithmetic Calculations and Built-In Operations

Arithmetic in Maple can be performed on either fixed numeric or variable
quantities. Multiplication requires the use of * and exponentiation the use of
the ˆ symbol. Some examples include the following:

> a:=8;
a := 8

> 3*a;
24

> 2ˆ5;
32

> 4/a;
1

2

Commonly used built-in functions are those used to compute square roots,
logarithms, exponentials, and trigonometric values. Note how the exponen-
tial ex is written, exp(x), and the constant π is written as Pi.

> x:=9:

> sqrt(x);
3

> ln(1);
0

> exp(2);
e2

> sin(Pi/3);
1

2

√
3

Maple returns exact values where possible. To obtain a floating-point rep-
resentation of a number, use the evalf command. For example, evalf(Pi)
returns 3.141592654. The default number of digits Maple uses for floating
point values is 10. To change this number, at the start of a worksheet enter
the command Digits:=N;, where N is the number of desired digits.

Frequently one wishes to take output from one command line and use it
directly in the next line without retyping the output value or assigning it a
name. The % symbol is useful for such situations in that it uses the most recent
output as its value.

354 Appendix C

> theta:=Pi/3;

θ :=
1

3
π

> sin(theta);
1

2

√
3

> evalf(%);
0.8660254040

A word of warning is in order regarding the use of %: Its value is the output
from the most recently executed command line. This value may or may not be
the output from the previous line in the worksheet, depending upon whether
or not command lines are executed in the order in which they appear. For this
reason, use %with caution.

C.3 Expressions and Functions

Expressions involving variables can be assigned names and manipulated by
passing the assigned name as an argument to the appropriate command.
Typical operations performed on expressions include factoring and simplify-
ing, as well as substitution of values (via the subs command) and equation
solving. For systems of equations, the equations themselves are listed within
braces, as are the unknown variables. Here are more examples:

> y:=(x+1)*(x-3);
y := (x + 1)(x − 3)

> expand(y);
x2 − 2x − 3

> z:=tˆ2-t-6;
z := t2 − t − 6

> factor(z);
(t − 3)(t + 2)

> subs(t=1,z);
−6

Getting Started with Maple 355

> y:=xˆ2+3*x+1;
y := x2 + 3x + 1

> solve(y=0,x);

−3

2
+

1

2

√
5, −3

2
− 1

2

√
5

> fsolve(y=0,x);
−2.618033989,−.3819660113

> solve({y=2x+3,y=-x+4},{x,y});
{
x =

1

3
, y =

11

3

}

As a general rule, solve returns exact roots, both real- and complex-valued
of an equation or system of equations, to the extent Maple is capable of
doing so. If unable to compute all roots, Maple will return a warning of the
form warning: SolutionsMayBeLost. Sometimes, Maple will express certain
solutions using placeholders of the form RootOf. This is especially true if one
root is difficult for Maple to compute, yet a second root is dependent upon
the first. Here is an example:

> solve({y=2*x, xˆ4-xˆ2},{x,y});
{
x = RootOf(Z4 − Z3 + 1, label = L1), y = 2RootOf(Z4 − Z3 + 1, label = L1)

}

This output indicates that each solution value x, of which there are four,
corresponds to a value of y, each of which is twice x.

Maple’s fsolve command differs from solve in that approximate solutions
are returned. For single equations having real-valued coefficients, fsolve
returns approximations of all real-valued roots. For systems of such equa-
tions, Maple returns one approximate solution. Further details regarding the
solve and fsolve commands can be found by typing ?solve/details or
?fsolve/details at the command prompt.

Functions can be entered in Maple using arrow notation (a dash followed
by a greater-than sign) or via the unapply command. For example, to enter
the function f (x) = x2+ 1, type either f:=x->xˆ2-4or f:=unapply(xˆ2-4,x).
Once a function is defined, it can be used to evaluate both numeric and
variable outputs.

356 Appendix C

> f:=x->xˆ2-4;
f := x→ x2 − 4

> f(3);
5

> f(3+h);
(3 + h)2 − 4

> expand(%);
5 + 6h + h2

Functions of more than one variable are entered in a very similar manner.

> f:=(x1,x2)->sin(x1+x2);

f := (x1, x2)→ sin(x1 + x2)

> f(x1,Pi);
sin(x1 + π)

A very important distinction exists in Maple between functions and expres-
sions. The rule f defined using the -> notation or unapply command is a
function, whereas quantities such as f(x) and f(3+h) are expressions in x
and h, respectively. Commands for expressions may be applied to f(x) and
f(3+h). For example, solve(f(x)=0,x) determines the roots of the function
f and factor(f(x)) produces the factored form of f (x), which is again an
expression.

Functions are more appropriate than expressions when one wishes to perform
“function-like” operations, such as evaluating function values or creating new
functions from old ones. For example, to compute the derivative function, use
the Maple D operator. Here is an example utilizing this operator to calculate
first and second derivatives of a function, along with critical points and in-
flection points and their respective function outputs. Note the documentation
through the use of the #.

> f:=x->x*exp(x);
f := x→ xex

> D(f)(x); # Calculate derivative function.

ex + xex

> evalf(D(f)(1)); # Calculate derivative value at x=1.

5.436563656

Getting Started with Maple 357

> solve(D(f)(x)=0,x); # Determine critical point of function.

−1

> f(%); # Evaluate function at critical point.

−e−1

> (D@@2)(f)(x); # Calculate second derivative function.

2ex + xex

> solve((D@@2)(f)(x)=0,x); # Determine point of inflection of function.

−2

> f(%);# Evaluate function at inflection point.

−2e−2

The commands diff(f(x),x) and diff(f(x),x$2) also yield the first and
second derivatives as expressions and could be combined with the solve
command to determine the preceding critical point and inflection point.

C.4 Arrays, Lists, Sequences, and Sums

An array in Maple can be considered as a table of dimension n ≥ 1, in which
each entry corresponds to an ordered n-tuple. Arrays are created using the
array command, and entries are assigned values through a nested for-do
loop structure. This simple programming structure takes the form

> for i from m to n do task;od;

where m and n represent the smallest and largest index values, respectively,
and task denotes the operation to be performed for index value, i.

For example, here is a 2-by-3 array, in which each entry is assigned the sum of
the corresponding column and row indices. The entire array is then printed.

> A:=array(1..2,1..3);

A := array(1..2, 1..3, [])

> for i from 1 to 2 do for j from 1 to 3 do A[i,j]:=i+j:od:od:

358 Appendix C

> print(A); [
2 3 4
3 4 5

]

Later we will see how arrays provide a convenient means for creating vari-
ables labeled with double or triple indices.

Lists are merely one-dimensional arrays. The only advantage of a list is that
it need not be first defined using the array command. For example, the
command L:=[1,2,4,8,16] defines a list, such that L[1]=1, L[2]=2, and so
on. A sequence, created using the seq command, can be thought of as a list
without brackets. It is frequently used to create longer sequences of values as
in the following commands, which create a sequence, called S, consisting of
the first 10 nonnegative powers of two. This sequence is then used to form a
list, labeled T.

> S:=seq(2ˆj,j=0..10);

S := 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024

> T:=[S];
T := [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

To extract a sequence from a list, T, we use the command op(T), and to
determine the number of entries of this list, we use nops(T). Here is an
example:

> T:=[1,2,4,8,16,32,64];

T := [1, 2, 4, 8, 16, 32, 64]

> op(T);
1, 2, 4, 8, 16, 32, 64

> nops(T);
7

The Maple commands sum and add are used to add finite sequences of values
together. The first command is used to determine the closed form representa-
tion, if one exists, of a sum involving symbolic quantities. The add command
is used instead to add explicitly a finite sequence of values. The following
examples illustrate the commands and their differences:

> sum(rˆk,k=0..n);
rn+1

r − 1
− 1

r − 1

> add(2ˆk,k=0..5);
63

Getting Started with Maple 359

C.5 Matrix Algebra and the LinearAlgebra Package

“Packages” in Maple contain commands that are made available to the user
only if the package is loaded into the worksheet. This is accomplished through
typing with(package name) at the command prompt. To load a package
without seeing all package commands, use a colon at the end of the with
command line; to see all commands listed, use a semicolon. Maple packages
used in this text include LinearAlgebra, plots, plottools, Optimization,
and VectorCalculus. To learn about a package’s particular command, its
uses, and appropriate syntax, type ?command name.

Maple’s LinearAlgebra package is capable of performing a wide variety of
operations on matrices containing both numeric and symbolic entries. Here
the package is loaded in a manner that reveals all its commands:

> restart;

> with(LinearAlgebra);

[Add,Adjoint,BackwardSubstitute,BandMatrix,Basis,BezoutMatrix,
BidiagonalForm,BilinearForm,CharacteristicMatrix,CharacteristicPolynomial,
Column,ColumnDimension,ColumnOperation,ColumnSpace,CompanionMatrix,
ConditionNumber,
ConstantMatrix,ConstantVector,Copy,CreatePermutation,
CrossProduct,DeleteColumn,DeleteRow,Determinant,Diagonal,DiagonalMatrix,
Dimension,Dimensions,DotProduct,EigenConditionNumbers,Eigenvalues,
Eigenvectors,Equal, ForwardSubstitute, FrobeniusForm,GaussianElimination,
GenerateMatrix,Generic,GetResultDataType,GetResultShape,GivensRotationMatrix,
HankelMatrix,HermiteForm,HermitianTranspose,HessenbergForm,HilbertMatrix,
HouseholderMatrix, IdentityMatrix, IntersectionBasis, IsDe f inite, IsOrthogonal,
IsSimilar, IsUnitary, JordanBlockMatrix, JordanForm, LAMain, LUDecomposition,
LeastSquares, LinearSolve,Map,Map2,MatrixAdd,MatrixExponential,
MatrixFunction,MatrixInverse,MatrixMatrixMultiply,MatrixNorm,MatrixPower,
MatrixScalarMultiply,MatrixVectorMultiply,MinimalPolynomial,Minor,Modular,
Multiply,NoUserValue,Norm,Normalize,NullSpace,OuterProductMatrix,Permanent,
Pivot,PopovForm,QRDecomposition,RandomMatrix,RandomVector,Rank,
RationalCanonicalForm,ReducedRowEchelonForm,Row,RowDimension,RowOperation,
RowSpace, ScalarMatrix, ScalarMultiply, ScalarVector, SchurForm,
SingularValues, SmithForm, StronglyConnectedBlocks, SubMatrix, SubVector,
SumBasis, SylvesterMatrix,ToeplitzMatrix,Trace,Transpose,TridiagonalForm,
UnitVector,VandermondeMatrix,VectorAdd,VectorAngle,VectorMatrixMultiply,
VectorNorm,VectorScalarMultiply,ZeroMatrix,ZeroVector,Zip]

Matrices are constructed in two different ways. The first involves using the
Matrix command, Matrix(m,n,L), where m and n denote the number of rows

360 Appendix C

and columns, respectively, and where L is a list of the matrix entries, reading
across the rows. For example:

> A:=Matrix(2,3,[1,4,0,2,-3,7]);

A =

[
1 4 0
2 −3 7

]

A second method for defining a matrix uses column vector notation. A column
vector1 inRn can be entered as <a1,a2,a3,...,an>,where a1,...,andenote
the entries of the vector. Matrices are then formed by adjoining vectors using
the symbols <, |, and >. Here is the preceding matrix A entered in such a
manner:

> v1:=<1,2>:

> v2:=<4,-3>:

> v3:=<0,7>:

> A:=<v1|v2|v3>;

A =

[
1 4 0
2 −3 7

]

To “stack” vectors vertically, as opposed to aligning them in column vector
form, replace each | separating two entries with a comma instead:

> v1:=<1,2>:

> v2:=<4,-3>:

> v3:=<0,7>:

> A:=<v1,v2,v3>;

A =

1
2
4
−3
0
7

Once matrices are entered into Maple, various operations can be performed
on them. To multiply matrices A and B use a period. A scalar multiplied by a
matrix still requires the asterisk, however. The following worksheet illustrates
the use of several LinearAlgebra package commands:

> restart;

> with(LinearAlgebra): # Load Linear Algebra Package.

1Unless specifically stated otherwise, we assume throughout this text that every vector is a
column vector.

Getting Started with Maple 361

> v1:=<1,2,3>: v2:=<1,1,1>: v3:=<-1,1,3>: # Define three vectors,
v1, v2, and v2.

> A:=<v1|v2|v3>; # Create a matrix A having v1, v2, and v3 as columns.

A :=

1 1 −1
2 1 1
3 1 3

> RowOperation(A, [1, 3], 2); # Replace the first row of A with
the sum of the first row and twice the third row.

7 3 5
2 1 1
3 1 3

> B:=Matrix(3,3,[1,1,2,2,4,-3,3,6,-5]): # Define a 3 by 3 matrix
B using the Matrix command.

> A.B; # Compute the product matrix AB.

0 −1 4
7 12 −4

14 25 −12

> 2*A+IdentityMatrix(3); # Compute the sum of 2*A and the 3 by
3 identity matrix.

3 2 −2
4 3 2
6 2 7

> x := Vector[row]([1, 2, 3]); # Define a row vector x.

[1, 2, 3]

> x.A; # Compute the vector-matrix product xA.

[14, 6, 10]

> Transpose(A); # Compute transpose matrix of A.

1 2 3
1 1 1
−1 1 3

> ReducedRowEchelonForm(A); # Compute reduced row echelon form
of A.

1 0 2
0 1 −3
0 0 0

362 Appendix C

> b:=<2,1,0>; # Define a vector b.

b :=

2
1
0

> LinearSolve(A,b,free=t); # Solve the matrix equation Ax=b, specifying
any free variables be labeled using t with appropriate subscripts.

−1 − 2t3

3 + 3t3

t3

> b:=<b1,b2,b3>: # Define a new vector b having variable entries.

> M:=<A|b>; # Define the matrix M by augmenting A with b.

M :=

1 1 −1 b1
2 1 1 b2
3 1 3 b3

> GaussianElimination(M); # Compute the row echelon form of M.

1 1 −1 b1
0 −1 3 b2 − 2b1
0 0 0 b3 + b1 − 2b2

> Determinant(B); # Compute the determinant of B.

−1

> MatrixInverse(B); # Compute inverse matrix of B.

2 −17 11
−1 11 −7
0 3 −2

A word of warning is in order regarding Maple’s row operation conventions.
The ReducedRowEchelon command calculates the reduced row echelon form
of a matrix. However, if the matrix contains variable entries, Maple will
perform row operations that may include dividing by variable expressions,
ignoring the fact that such expressions could be zero. For example, when
GaussianElimination(M) is replaced by ReducedRowEchelonForm(M) in the
preceding worksheet, the output changes to

1 0 2 0
0 1 −3 0
0 0 0 1

Getting Started with Maple 363

This output reflects Maple’s assumption that the expression b3 + b1 − 2b2 is
nonzero.

Finally, we point out two common issues that frequently arise in the context
of arrays and matrices. First, for large arrays and matrices, Maple returns
output in summary format. For example, an 11-by-2 matrix A is displayed as

A :=

11 × 2 Matrix
Data Type: anything
Storage: rectangular

Fortran order

To view the actual contents of the matrix, select the output, right-click, and
select “Browse.” Actual entries are displayed in table format, which can then
be displayed in the worksheet and even exported to Excel. Second, Maple is
capable of converting various data types from one form to another. Typical
conversions used throughout this text include those converting arrays to
matrices and vice versa. For example, convert(A,Matrix) converts an array,
A, to a Matrix type, thereby permitting the use of matrix operations. The
commandconvert(B,array) converts a Matrix object, B, to an array. A second
frequently used conversion will be that from a list to a vector (or vice versa).
For example, convert(L,Vector)converts a list, L, to a Vector. For a thorough
list of data types and permissible conversions, type ?convertat the command
prompt.

C.6 Plot Structures with Maple

Maple is very versatile in its ability to create plots of different types. In this
section we focus on four of these: functions and expressions, relations, regions
defined by inequalities, and point plots.

Plotting Functions and Expressions
To plot a function of one variable, use the commandplot(function,interval,
options); for a function of two variables, use plot3d(function,domain,
options) instead. In each of these commands, the function should be given
in expression form. For a function, f of the variable, x, this expression is f(x),
and for the function f of two variables, x1 and x2, it is f(x1,x2). In the former
case, the plot interval takes the form x=a..b, where a and b are real numbers
with a < b. For the function of two variables, the domain is expressed as a
sequence of two intervals. Options can control plot color, range of output
values, axes labeling, and numerous other plot features. For a complete list of

364 Appendix C

options, type either ?plot[options] or ?plot3d[options] at the command
prompt. Here are two examples, which illustrate both the plot and plot3d
commands and a few commonly used options:

> restart;

> f:=x->x+sin(x);
f := x→ x + sin(x)

> plot(f(x),x=0..2*Pi,y=0..6,color=blue);
#plot function in blue on interval [0,2*Pi], restricting output

values to the interval [0,6].

The output is shown in Figure C.1.

FIGURE C.1: Sample plot of a function of one variable.

> g:=(x1,x2)->x1*exp(-x1 ˆ2 -x2 ˆ2);

g := (x1, x2)→ x1e−x2
1
−x2

2

> plot3d(g(x1,x2), x1=-2..2,x2=-2..2,color=red,style=wireframe,
axes=framed);

#plot function in red on specified rectangle using the

wireframe style and a framed set of axes.

Getting Started with Maple 365

FIGURE C.2: Sample plot of a function of two variables.

The output is shown in Figure C.2.

To plot more than one function or expression on a single set of axes, enter
the functions and/or expressions as a list within the plot command. Colors
can be specified using a list in which each color matches the corresponding
function or expression entry. Here is an example, in which the functions
f (x) = x+ sin(x), y = x− 1, and y = x+ 1 are plotted on a single set of axes, in
black, blue and red, respectively:

> plot([f(x),x-1,x+1],x=0..2*Pi,y=0..6,color=[black,blue,red]);
f, x-1, and x+1 are plotted black, blue, and red, respectively.

The output is shown in Figure C.3.

Relations and Other Important Plot Structures
Plot structures for functions are the simplest, but Maple is capable of produc-
ing numerous other types as well. Here we illustrate three examples, all of
which require the plots package.

The first uses the implicitplot command to plot the relation x = y3 − y.

> restart;

> with(plots):

366 Appendix C

FIGURE C.3: Sample plot of three functions of a single variable.

> implicitplot(x=yˆ3-y, x=-4..4,y=-4..4,color=blue, grid=[50,50]);
Plot relation in blue on given rectangle;

the rectangle is divided horizontally and vertically

into a 50 by 50 grid in order to improve resolution .

The output is shown in Figure C.4.

The pointplot command plots a list of data points in R2, with each data
point itself expressed as a list of two numbers.

> restart;

> with(plots):

> L:=[[1,2],[1,1],[0,.5],[-1,-1]];

L := [[1, 2], [1, 1], [0, .5], [−1,−1]]

> pointplot(L,color=blue,symbol=circle,symbolsize=20);
Plot points as blue circles using specified size.

The output is shown in Figure C.5.

To plot points in R3, one merely uses the pointplot3d command instead,
where each point in the list L is expressed as a list of three numbers.

Getting Started with Maple 367

FIGURE C.4: Example of a plotted relation.

Finally, the inequal command is extremely useful for graphing regions in the
R

2 that satisfy a list of linear inequalities. Here is an example, which shades
the region bounded by x1 ≤ 2, x2 ≥ 1, x1 + x2 ≤ 4, and x1 − x2 ≥ −2.

> restart;

> with(plots):

> inequal([x1<=2,x2>=1,x1+x2<=4,x1-x2>=-2],x1=-3..3,x2=0..5,
optionsfeasible=(color=grey),

optionsexcluded=(color=white),

optionsclosed=(color=black));

Shade in grey the region of points satisfying all

inequalities in the list. The exterior and boundary

of the region are colored white and black, respectively.

The output is shown in Figure C.6.

Superimposing Plots
One of the most useful Maple tools for combining plot structures is the
display command, which is located in the plots package. It allows one
to superimpose a list of plot structures, all of whose members are plot struc-
tures in one ofR2 or inR3. The general procedure for accomplishing this task
first requires creating the individual plot structures themselves (e.g., plot,

368 Appendix C

FIGURE C.5: Example of plotted points.

implicitplot, pointplot, etc.) as discussed previously. However, each plot
structure is assigned a name and the command line performing the assign-
ment ends with a colon so as to suppress output. Once the structures are
all created in this manner, a list is formed using their respective names, and
this list is used as the argument for the display command. Here is an exam-
ple, which superimposes results from the preceding pointplot and inequal
commands.

> restart;

> with(plots):

> L:=[[1,2],[1,1],[0,.5],[-1,-1]];

L := [[1, 2], [1, 1], [0, .5], [−1,−1]]

> G1:=pointplot(L,color=blue,symbol=circle,symbolsize=20):

> G2:=inequal([x1<=2,x2>=1,x1+x2<=4,x1-x2>=-2],x1=-3..3,x2=0..5,
optionsfeasible=(color=grey), optionsexcluded=(color=white),

optionsclosed=(color=black)):

> display([G1,G2]);

The output is shown in Figure C.7.

Getting Started with Maple 369

FIGURE C.6: Plot of region satisfying list of linear inequalities.

FIGURE C.7: Superposition of two plot structures.

Appendix D

Summary of Maple Commands

Here is a list of Maple commands used at various points in this text, organized
by package name. Each command is accompanied by a brief explanation of
its syntax as well as an example. To learn more about a particular command,
type ?command name at the command prompt. To load a particular package,
type with(package name).

Functions

1. f:=x-> expression involving x:

Constructs a function named f, whose rule is governed by the given
expression.

Example:

> f:=x->xˆ2 -x;

f := x→ x2 − x

> f(3);

6

Functions of more than one variable are similarly defined.

Example:

> f:=(x1,x2)-> x1ˆ2 -x2ˆ2;

f := (x1, x2)→ x2
1 − x2

2

> f(2,1);

3

Piecewise-defined functions can be entered via the piecewise com-
mand, whose general form is

piecewise(cond1,expr1,...,condn, exprn,expr otherwise),

371

372 Appendix D

where each condition corresponds to the expression immediately fol-
lowing it. The conditions are expressed as inequalities and Boolean
combinations thereof.

Example:

> f:=x->piecewise(x<=0,-xˆ2, x>0 and x<=2,xˆ2, 0);

f := x− > piecewise(x < 0,−x2, x > 0 and x ≤ 2, x2, 0)

Defines the function f , whose output equals −x2 for negative inputs, x2

for inputs between 0 and 2, inclusive, and 0 otherwise.

The unapply command defines functions as well.

Example:

> f:=unapply(x1ˆ2 -x2ˆ2,[x1,x2]);

f := (x1, x2)→ x2
1 − x2

2

Plot Structures

1. plot(expression,interval,options);

Plots an expressionof a single variable over the specified interval using
prescribed options, such as graph color, etc.

Example:

> f:=x->xˆ2:
> plot(f(x),x=-1..3,color=red);

Plots the function f (x) = x2 in red on the interval [−1, 3]

For a complete list of plot options, type ?plot[options] at the com-
mand prompt.

2. plot3d(expression,plot region, options);

Plots an expression in two variables using specified plot region and
options, which dictate surface type, color, etc.

Example:

> f:=(x1,x2)->x1*x2:
> plot3d(f(x1,x2),x1=0..2,x2=-2..2,style=wireframe,color=blue);

Plots the function f (x1, x2) = x1x2 in blue, wireframe style on the
region 0 ≤ x1 ≤ 2 and −2 ≤ x2 ≤ 2.

Summary of Maple Commands 373

For a complete list of plot3d options, type ?plot3d[options] at the
command prompt.

3. implicitplot(relation,options);

Plots a relation in two variables using specified options, which dictate
plot region, color, etc.

Example:

> implicitplot(x1ˆ2-x2ˆ2=1,x1=-5..5,x2=-5..5,color=green,
thickness=3);

Plots the relation x2
1
−x2

2
= 1 in green, thickness level 3 on the region

−5 ≤ x1 ≤ 5 and −5 ≤ x2 ≤ 5.

4. contourplot(relation,options);

Creates a contour plot of an expression in two variables using specified
options, which dictate plot region, color, contour values, etc.

Example:

> contourplot(x1ˆ2-x2ˆ2,x1=-5..5,x2=-5..5,color=blue,
contours=[-2,-1,0,1,2]);

Creates blue contour plot on the region−5 ≤ x1 ≤ 5 and−5 ≤ x2 ≤ 5
of the expression z = x2

1
− x2

2 using z values of z = −2,−1, 0, 1, 2.

5. inequal(inequalities,options);

Plots the region in the plane consisting of points that satisfy the given
inequalities. The inequalities must be linear, allow for equality, and
should be enclosed within brackets and separated by commas. The
options dictate the plot region, the color of the region satisfying the
inequalities, (optionsfeasible), the color of the boundary of the region,
(optionsclosed), and the color of the points not satisfying at least one
inequality, (optionsexcluded).This command is contained in the plots
package.

Example:

> with(plots):
> inequal([x1+x2 <= 3, x2 >= x1], x1 = 0 .. 5, x2 = 0 .. 5,
optionsfeasible = (color = red), optionsclosed = (color =

green), optionsexcluded = (color = yellow));

Plots in red the set of points, (x1, x2), that satisfy the inequalities,
x1+ x2 ≤ 3 and x2 ≥ x1 and that belong to the plot region 0 ≤ x1 ≤ 5
and 0 ≤ x2 ≤ 5. The boundary of the region is colored green, and
the points not satisfying at least one inequality are colored yellow.

374 Appendix D

This command also has coloring options for situations when at least
one inequality is strict, i.e., involves < or > as opposed to ≤ or ≥.

6. pointplot(list of points,options);

Plots the specified list of points using specified options. Each point
should consist of two numbers, separated by commas and enclosed
within brackets. Then these points themselves are separated by com-
mas and enclosed within brackets again. Options permit specifying the
point color, the point symbol, (asterisk, box, circle, cross, diagonalcross,
diamond, point, solidbox, solidcircle, soliddiamond), and the size of
this symbol, whose default value is 15. This command is contained in
the plots package.

Example:

> with(plots):
> pointplot([[-1,3],[0,0],[3,7]],symbol=box,symbolsize=20);

Plots, as red boxes, the ordered pairs, (−1, 3), (0, 0), and (3, 7). The
size of the symbol is slightly larger than the default value.

A similar command, pointplot3d, exists for pointing points in R3.

7. display(plot structures,options);

Superimposes on a single set of axes, the given plot structures, all
of which belong to R2 or all of which belong to R3, using the specified
options. The plot structures themselves must be separated by commas
and enclosed within brackets or braces.

This command, which is located in the plots package, is frequently
used to superimpose different plot structures that have been previously
created and assigned different names.

Example:

> with(plots):
> graph1:=pointplot([[-1,3],[0,0],[3,7]],symbol=box,symbolsize=20):
> graph2:=inequal([x1+x2 <= 3, x2 >= x1], x1 = 0 .. 5, x2 =
0 .. 5, optionsfeasible = (color = red), optionsclosed =

(color = green), optionsexcluded = (color = yellow)):
> display([graph1,graph2],axes=framed);

Displays the superposition of the set of points specified by graph1,
along with the region specified by graph2.

Summary of Maple Commands 375

Basic Programming Structures

1. if condition then statement 1 else statement 2 end if:

Performs statement 1 provided condition is true and statement 2
otherwise.

Example:

> a:=5:
> if a > 2 then x:=5 else x:=0 end if:
> x;

5

2. for index from start to finish by change do statement end do:

Perform task specified by statement using index value index, which
varies from start to finish in increments of change.

Example:

> for i from 0 to 20 by 5 do print(i) end do;

0

5

10

15

20

3. while condition do statement end do:

Performs statement so long as condition is true.

Example:

> a:=5:
> while a < 8 do a:=a+1: print(a): end do:

6

7

8

376 Appendix D

4. proc(arguments) local variables1: global variables2: task: RETURN(output):
end:

Performs programming procedure using input arguments. Local vari-
ables are internal to the procedure and cannot be accessed outside of
it; global variables are accessible outside the procedure. The procedure
returns output.

Example:

> PowerCounter:=proc(number, value) local i:global n:
n:=0: for i from 0 to 5 do if numberˆi <= value then n:=n+1:

end if:

RETURN(n):

end:

> PowerCounter(2,33);

5

Procedure for determining the number of powers of number that are less
than or equal to value, where the powers vary from 0 to 5.

Arrays and Lists

1. array(i..j,m..n);

Creates an array in two integer indices, with the first index ranging
from i to j and the second from m to n.

Example:

> A:=array(0..2,1..3);

array(0..2, 1..3, [])

Array entries are frequently assigned values using looping structures.

Example:

> A:=array(0..2,1..3);
> for i from 0 to 2 do for j from 1 to 3 do A[i,j]:=i+j:od:od:

Creates an array, A, consisting of 9 entries, where the indices vary
from 0 to 2 and 1 to 3, respectively. Each entry is the sum of the
two corresponding indices. For example, A[0, 2] = 2.

Summary of Maple Commands 377

2. [list-entries];

Creates an ordered list using list-entries. The values of
list-entries must be separated by commas. Values in the list can
be extracted using subscripts; the commands nops determines the size
of the list, and op removes the outer brackets.

Examples:

> L:=[1,2,4,8,16,32]:
> L[3];

4

> nops(L);
6

> op(L);

1, 2, 4, 8, 16, 32

> L:=[blue,red,black,green]:
> L[3];

black

> nops(L);
4

> op(L);

blue, red, black, green

Sequences, Sums, and Products

1. seq(expression,index=start to finish);

Creates a sequence of values that results when the integer index value
index, which varies between start and finish, is substituted into
expression.

Example:

> seq(3ˆi,i=-2..3);

1

9
,

1

3
, 1, 3, 9, 27

378 Appendix D

2. sum(expression,index=start to finish);

Computes a closed form for the sum that results when the integer
index is substituted into expression, where index varies from start
to finish and the resulting sequence of values are added together.

Example:

> sum((1/2)ˆi,i=0..infinity);

2

3. add(expression,index=start to finish);

Computes the explicit sum that results when the integer index is sub-
stituted into expression, where index varies from start to finish and
the resulting sequence of values are added together.

Example:

> add(2ˆi,i=-2..6);

511

4

4. product(expression,index=start to finish);

Computes the explicit product that results when the integer index is
substituted into expression, where index varies from start to finish
and the resulting sequence of values are multiplied together.

Example:

> product(2ˆi,i=1..3);

64

Linear Algebra
Commands in this section are contained in the Linear Algebra package.

1. Vector(entries):

Constructs a vector having components given by entries. The entries
should be separated by commas and enclosed with brackets. By default,
Maple assumes a vector is a column vector. To enter a row vector instead,
type Vector[row](entries).

Examples:

> with(LinearAlgebra):

Summary of Maple Commands 379

> Vector([1,2]);

[
1
2

]

> Vector[row]([1,2]);

[
1 2

]

Alternatively, a column vector can be entered using <, >, notation, e.g.,
<1,2>.

2. Matrix(m,n,entries);

Constructs an m-by-n matrix having using prescribed entries, which
are read by rows. The object entries should be separated by commas
and enclosed with brackets.

Example:

> with(LinearAlgebra):
> Matrix(2,3,[1,4,5,-3,2,5]);

[
1 4 5
−3 2 5

]

Alternatively, a matrix can be entered by combining vectors and using
the symbols < and >. Two vectors are augmented using | and stacked
with a comma.

Example:

> with(LinearAlgebra):
> v1:=<2,3>:
> v2:=<-4,0>:
> <v1|v2>;

[
2 −4
3 0

]

> <v1,v2>;

2
3
−4
0

380 Appendix D

3. Norm(column vector,Euclidean);

Computes the Euclidean norm of vector, which is entered as a column
vector using <, >, notation or a Matrix.

Example:

> with(LinearAlgebra):
> u:=<3,4>:
> Norm(u,Euclidean);

5

> v:=Matrix(2,1,[3,4]):
> Norm(v,Euclidean);

5

Note: Maple’s VectorCalculuspackage also contains a Norm command,
which accepts a row vector as its argument, as opposed to a column
vector. Because of this fact, and for the sake of uniformity, when using
both packages, we always load the LinearAlgebra package second.

4. ZeroMatrix(m,n);

Constructs an m-by-n zero matrix; Similarly, ZeroVector(m); constructs
a column vector with m entries.

Example:

> with(LinearAlgebra):
> ZeroMatrix(2,3);

[
0 0 0
0 0 0

]

5. IdentityMatrix(m);

Constructs an m-by-m identity matrix.

Example:

> with(LinearAlgebra):
> IdentityMatrix(2);

[
1 0
0 1

]

6. UnitVector(m,n);

Constructs a column vector in Rn having an entry of 1 in component m
and a zero in all other components.

Example:

Summary of Maple Commands 381

> with(LinearAlgebra):
> UnitVector(2,4);

0
1
0
0

7. DiagonalMatrix(entries);

Constructs a square, diagonal matrix using entries along the diagonal.
The entries should be separated by commas and enclosed with brackets.

Example:

> with(LinearAlgebra):
> DiagonalMatrix([1,3,-5]);

1 0 0
0 3 0
0 0 −5

8. Row(M,m);

Extracts, as a row vector, row m of the matrix M. Likewise, Column(M,m)
extracts, as a column vector, column n of the matrix M.

Example:

> with(LinearAlgebra):
> A:=Matrix(2,3,[1,4,5,-3,2,5]);

[
1 4 5
−3 2 5

]

> Row(A,2);

[
−3 2 5

]

9. RowOperation(M,operation);

Performs a specified row operation, dictated by operation, on the ma-
trix M. There are three such operations.

> RowOperation(M,j,k);

Multiplies row j of M by k.
> RowOperation(M,[i,j]);

Interchanges rows i and j of M.
> RowOperation(M,[i,j],k);

Adds k times row j to i.

382 Appendix D

Example:

> with(LinearAlgebra):
> A:=IdentityMatrix(3);

1 0 0
0 1 0
0 0 1

> RowOperation(A,3,4);

1 0 0
0 1 0
0 0 4

> RowOperation(A,[1,3]);

0 0 1
0 1 0
1 0 0

> RowOperation(A,[1,3],-2);

Produces the matrix,

1 0 −2
0 1 0
0 0 1

Note: The option, inplace=true, replaces the value of the matrix with
that obtained by performing the specified row operation. For example,
RowOperation(M,[1,2], inplace=true) interchanges rows 1 and 2 of
M and overwrites the value of M with this new matrix.

10. Pivot(M,i,j);

Pivots on the entry in row i, column j of the matrix M.

Example:

> with(LinearAlgebra):
> A:=Matrix(3, 3, [1, 4, 5, -3, 2, 5, 7, 0, -1]);

1 4 5
−3 2 5
7 0 −1

> Pivot(A,1,3);

1 4 5
−4 −2 0
36
5

4
5 0

Summary of Maple Commands 383

11. RowDimension(M);

Determines the row dimension of the matrixM. Likewise,ColumnDimension(M);
determines the column dimension of M.

Example:

> with(LinearAlgebra):
> A:=Matrix(2,3,[1,4,5,-3,2,5]):
> RowDimension(A)

2

> ColumnDimension(A)

3

12. GaussianElimination(M);

Performs Gaussian elimination on the matrix M and produces the row
echelon form.

13. ReducedRowEchelonForm(M);

Computes the reduced row echelon form of M .

14. LinearSolve(A,b,t);

Solve the matrix equation Ax=b, specifying any free variables be labeled
using t along with appropriate subscripts.

Example:

> A:=Matrix(3,3,[1,1,-1,2,1,1,3,1,3]);

A :=

1 1 −1
2 1 1
3 1 3

> b:=<2,1,0>;

b :=

2
1
0

> LinearSolve(A,b,free=t);

−1 − 2t3

3 + 3t3

t3

15. Determinant(M);

Computes the determinant of the matrix M.

384 Appendix D

16. MatrixInverse(M);

Calculates the inverse of the matrix M. If the matrix is not invertible, an
error message is returned.

17. Eigenvalues(M);:

Calculates the eigenvalues of the matrix M.

18. Eigenvectors(M);

Calculates the eigenvectors and corresponding eigenvalues of the ma-
trix M. The eigenvalues are returned as a column vector, and the eigen-
vectors as corresponding columns in a matrix.

Example:

> with(LinearAlgebra):
> A:=Matrix(3,3,[1, 0, 0, 2, 3, 0, 4, 5, 3]):
> Eigenvectors(A)

1
3
3

 ,

2 0 0
−2 0 0
1 1 0

Thus, the matrix A has eigenvectors

2
−2
1

 (corresponding eigen-

value of 1) and

0
0
1

 (corresponding repeated eigenvalue of 3).

19. IsDefinite(M,’query’=q);

Tests whether the matrix M is positive (semi-) definite, negative (semi-
) definite, or indefinite. The returned value is true or false, and the
parameter q specifies the matrix form to be determined. Choices
for q consist of ’positive definite’, ’positive semidefinite’,
’negative definite’, ’negative semidefinite’, and ’indefinite’.

If the matrix has symbolic entries, the command returns conditions on
these entries for which q is satisfied.

Examples:

> with(LinearAlgebra):
> A:=Matrix(3,3,[1, 0, 0, 2, 3, 0, 4, 5, 3]):
> IsDefinite(A,’query’=’positive definite’)

f alse

> A:=Matrix(3,3,[1, 0, 0, 2, 3, 0, 4, 5, x]):

Summary of Maple Commands 385

> IsDefinite(A,’query’=’positive semidefinite’);

0 ≤ −33

4
+ 2x and 0 ≤ −33

4
+ 4x and 0 ≤ 4 + x

Importing Spreadsheet Data

This command is contained in the Exceltools package.

1. Import(‘‘directory
filename.xls’’, ’’sheetname’’,’’cellrange’’):

Imports cells cellrange, from worksheet, sheetname, of the Excel file,
filename.xls, located in directory. All command arguments are con-
tained in quotation marks, and the data itself is imported into an array,
which can then be converted to a Matrix and/or Vector structure.

Example:

> with(ExcelTools):
> A:=convert(Import(’’c
file.xls’’, ’’sheet1’’, ’’A1:D5’’),Matrix):

> B:=convert(Import(’’c
file.xls’’, ’’sheet1’’, ’’E1:E5’’),Vector):

Basic Statistics Commands

Commands in this section are contained in the Statistics package.

1. Mean(L):

Computes the mean value of the entries in the list, L.

2. Variance(L):

Computes the variance of the entries in the list, L.

Example:

> with(Statistics):
> L:=[1,2,3,4,5]:
> Mean(L);

3

> Variance(L);

2.5

Linear and Nonlinear Optimization

Commands in this section are contained in the Optimization package.

386 Appendix D

1. LPSolve(expression, constraints,options)

Solves the linear programming problem consisting of objective,
expression, subject to the entries of constraints. The quantity
expressionmust be linear in the decision variables, and entriesmust
consist of linear inequalities in the decision variables, separated by com-
mas and enclosed within brackets. The command permits a variety of
options, which can specify whether the objective is to be minimized
or maximized (the default goal is minimization), can dictate sign re-
strictions on decision variables, and can require one or more decision
variables to be integer-valued in the solution. The output of the com-
mand is a list, with the first entry given by the optimal objective value
and the second as a vector specifying the corresponding decision vari-
able values.

Examples:

> with(Optimization):
> LPSolve(-4*x1-5*x2, [x1+2*x2<=6, 5*x1+4*x2<=20],assume=
nonnegative);

[−19, [x1 = 2.6666, x2 = 1.6666]]

> LPSolve(-7*x1+2*x2, [4*x1-12*x2 <= 20, -x1+3*x2 <= 3],
assume = ’nonnegative’, maximize);

[2, [x1 = 0, x2 = 1]]

> LPSolve(3*x1-2*x2, [x1-2*x2 <= 5, -x1+3*x2 <= 3, x1 >= 2],
assume = integer);

[4, [x1 = 2, x2 = 1]]

> LPSolve(x1-2*x2, [x1-2*x2 <= 5, -x1+3*x2 <= 3, x1 >= 0],
assume = binary);

[−2, [x1 = 0, x2 = 1]]

The LPSolve command has several other options in addition to those
given above.

2. LPSolve(c, [A,b],options);

The matrix form of the LPSolve command in which the LP consists
of minimizing cx subject to Ax ≤b and the prescribed options. The
quantities c and b are vectors, and A is a matrix whose dimensions are
such that the matrix vector product, Ax, is well defined and has the
same number of entries as b. The output of the command is a list, with

Summary of Maple Commands 387

the first entry given by the optimal objective value and the second as a
vector representing x

Example:

> with(Optimization):
> c:=Vector[row]([-7,2]);

c = [−7, 2]

> b:=<20,3>;

b =

[
20
3

]

> A:=Matrix(2,2,[4,-12,-1,3]);

A =

[
4 −12
−1 3

]

> LPSolve(c, [A,b], assume = nonnegative,’maximize’);

[
2,

[
0
1

]]

3. NLPSolve(expression, constraints,options)

Similar to the LPSolve command, NLPSolve minimizes expression,
subject to constraints, which consists of a list of inequalities. Both
expressionand any particular constraint, are permitted to be nonlinear
in the decision variables. The advanced numeric method used by Maple
to execute this command generally returns a local optimal solution.
However, if the problem is convex, this local optimal solution is a global
optimal solution as well.

Example:

> with(Optimization):
> NLPSolve(x1ˆ2+x2ˆ2+3*x2, [x1ˆ2+x2ˆ2 <= 3, x1-x2 <= 4], assume
= nonnegative, ’maximize’);

[8.19615242273757792, [x1 = 0, x2 = 1.73205080757366470]]

4. QPSolve(quadratic expression, constraints,options)

A special case of the NLPSolve command is QPSolve, which solves
quadratic programming problems. In this situation, the objective,
quadratic expression, is quadratic in the decision variables. Each
entry of constraints takes the form of a linear or nonlinear inequality.

388 Appendix D

Example:

> with(Optimization):
> QPSolve(x1ˆ2+x2ˆ2+3*x2, [x1+x2 <= 3, x1-x2 <= 4]);

[−2.25, [x1 = 0, x2 = −1.5]]

5. QPSolve([p,Q],[C,d,A,b],options);

This is the matrix form of the QPSolve command, which solves the

quadratic programming problem of minimizing
1

2
xtQx + ptx subject to

the linear constraints, Ax = b and Cx ≤ d. Note that p, b, and d must
be entered as vectors and not as matrices. In addition, if only C and d
are listed within the brackets, Maple assumes they correspond to the
linear inequalities. If the problem involves equality constraints only,
constraints are given by [NoUserValue,NoUserValue,A,b].

Examples:

> with(Optimization):
> Q:=Matrix(2,2,[2,1,1,3]):
> p:=<5,-3>:
> C:=Matrix(2,2,[1,0,0,3]):
> d:=<3,0>:
> A:=Matrix(2,2,[4,2,2,1]):
> b:=<6,3>:
> QPSolve([p,Q],[C,d,A,b]);

[
9.75,

[
1.5 0

]]

> QPSolve([p,Q],[C,d]);
[
−6.25,

[
−2.5 0

]]

> QPSolve([p,Q],[NoUserValue,NoUserValue,A,b]);
[
3.70,

[
.4 2.2

]]

Vector Calculus
Commands in this section are contained in the VectorCalculus package.

1. Gradient(expression, variables)

Calculates the gradient vector of the multivariable expressionwith re-
spect to the variables prescribed by variables. The quantity variables
consists of comma separated variables enclosed within brackets. The
output of the command is expressed in terms of unit vectors corre-
sponding to each variable. Each such vector takes the form evariable

Example:

Summary of Maple Commands 389

> with(VectorCalculus):
> Gradient(x1ˆ2+2*x1*x2,[x1,x2]);

(2x1 + 2x2)ēx1 + 2x1ēx2

2. Jacobian(expressions, variables)

Calculates the Jacobian matrix of the multivariable expressions
with respect to the variables prescribed by variables. The quantity
expressions consists of comma-separated expressions enclosed within
brackets, and variables consists of comma separated variables en-
closed within brackets. The output of the command is expressed as a
matrix.

Example:

> with(VectorCalculus):
> Jacobian([x1ˆ2+2x1*x2,4x2ˆ2-3x1*x2] ,[x1,x2]);

[
2x1 + 2x2 2x1

−3x2 8x2 − 3x1

]

3. Hessian(expression, variables)

Calculates the Hessian matrix of the multivariable expressionwith re-
spect to the variables prescribed by variables. The quantity variables
consists of comma separated variables enclosed within brackets.

Example:

> with(VectorCalculus):
> Hessian(x1ˆ2+2*x1*x2,[x1,x2]);

[
2 2
2 0

]

Bibliography

[1] Apte, A., Apte, U., Beatty, R., Sarkar, I., and Semple, J., The Impact
of Check Sequencing on NSF (Not-Sufficient Funds) Fees, Interfaces, 34
(2004), 97-105.

[2] Avriel, M., Nonlinear Programming, Dover Publications, Mineola, NY,
2003.

[3] Bartlett, A., Chartier, T., Langville, A., and Rankin, T., An Integer Pro-
gramming Model for the Sudoku Problem, The Journal of Online Mathe-
matics and its Applications, 9 (2008).

[4] Bazaraa, M., Sherali, H., and Shetty, C., Nonlinear Programming: Theory
and Applications, John Wiley and Sons, Hoboken, 2006.

[5] Belovsky, G., Herbivore Optimal Foraging: A Comparative Test of Three
Models, The American Naturalist, 124 (1984), 97-115.

[6] Bernstein, D., Matrix Mathematics, Princeton University Press, Princeton,
2005.

[7] Bevington, P., and Robinson, D., Data Analysis and Error Analysis for the
Physical Sciences, McGraw-Hill, New York, 2002.

[8] Blandford, D., Boisvert, R., and Charles, C., Import Substitution for Live-
stock Feed in the Caribbean Community, American Journal of Agricultural
Economics, 64, (1982), 70-79.

[9] Bouskila, A., A Habitat Selection Game of Interactions Between Rodents
and Their Predators, Annales Zoologici Fennici, 38 (2001), 55-70.

[10] Dantzig, G., and Thapa, M., Linear Programming 2: Theory and Extensions,
Springer, New York, 2003.

[11] DeWitt, C., Lasdon, L., Waren, A., Brenner, D., and Melhem., S., OMEGA:
An Improved Gasoline Blending System for Texaco, Interfaces, 19 (1989),
85-101.

[12] Duncan, I.B., and Noble, B.M., The Allocation of Specialties to Hospitals
in a Health District, The Journal of the Operational Research Society, 30
(1979), 953-964.

391

392 Bibliography

[13] Floudas, C.A., Pardalos, P.M., (Eds.) Recent Advances in Global Optimiza-
tion, Princeton University Press, Princeton, 1992.

[14] Heller, I., and Tompkins, C.B., An Extension of a Theorem of Dantzig’s,
in, Linear Inequalities and Related Systems, Kuhn, H.W. and Tucker, A.W.
(Eds.) Princeton University Press, Princeton, 1956, 247-254.

[15] Horn, R., and Johnson, C., Matrix Analysis, Cambridge University Press,
Cambridge, 1985.

[16] Horst, R., and Tuy, H., Global Optimization - Deterministic Approaches,
Third Edition, Springer, Berlin, 1996.

[17] Jarvis, J., Rardin, R., Unger, V., Moore, R., Schimpler, C., Optimal Design
of Regional Wastewater Systems: A Fixed-Charge Network Flow Model,
Operations Research, 26 (1978), 538-550.

[18] Karmarkar, N., A New Polynomial-Time Algorithm for Linear Program-
ming, Combinatorica, 4 (1984), 373-395.

[19] Klee, V., and Minty, G.J., How Good is the Simplex Method?, in Inequal-
ities III, Shisha, O., (Ed.), Academic Press, New York, 1972, 159-175.

[20] Ladany, S., Optimization of Pentathlon Training Plans, Management Sci-
ence, 21, (1975), 1144-1155.

[21] Lay, D., Linear Algebra, Third Edition, Addison-Wesley, New York, 2006.

[22] Letavec, C., and Ruggiero, J., The n-Queens Problem, INFORMS Trans-
actions on Education, 2 (2002), 101-103.

[23] Levenberg, K., A Method for Solution of Certain Non-linear Problems
in Least-squares, Quarterly of Applied Mathematics, 2 (1944), 164-168.

[24] Luenberger, D., Linear and Nonlinear Programming, Second Edition,
Springer, New York, 2003.

[25] Machol, R., An Application of the Assignment Problem, Operations Re-
search, 18, 1970, 585-586.

[26] Mangasarian, O., Street, W., and Wolberg, W., Breast Cancer Diagnonsis
and Prognosis via Linear Programming, Mathematical Programming
Technical Reports 94-10, Madison, WI, 1994.

[27] Mangasarian, O., Equilibrium Points of Bimatrix Games, Journal of the
Society for Industrial and Applied Mathematics, 12 (1963), 778-780.

[28] Marquardt, D., An Algorithm for Least Squares Estimation of Parame-
ters, Journal of the Society for Industrial and Applied Mathematics, 11 (1963),
431-441.

Bibliography 393

[29] Marsden, J., and Tromba., A., Vector Calculus, Fifth Edition, W.H. Freeman
and Company, New York, 2003.

[30] Marshall, K., and Suurballe, J., A Note on Cycling in the Simplex Algo-
rithm, Naval Research Logistics Quarterly, 16 (1969) 121-137.

[31] Maynard, J., A Linear Programming Model for Scheduling Prison
Guards, UMAP Module 272, The Consortium for Mathematics and its
Applications, Birkhauser, Boston, 1980.

[32] McIntyre, L, Using Cigarette Data for an Introduction to Multiple Re-
gression, Journal of Statistics Education (online), 2 (1994).

[33] Moreb, A., and Bafail, A., A Linear Programming Model Combining
Land Leveling and Transportation Problems, The Journal of the Operational
Research Society, 45 (1994), 1418-1424.

[34] Nash, J., Non-Cooperative Games, The Annals of Mathematics, 54 (1951),
286-295.

[35] Neumaier, A., Interval Methods for Systems of Equations, Cambridge Uni-
versity Press, Cambridge, 1990.

[36] Nocedal, J., and Wright, S., Numerical Optimization, Springer, New York,
2000.

[37] Pendegraft, N., Lego of my Simplex, ORMS Today (online), 24 (1997).

[38] Penrose, K., Nelson, A., and Fisher, G., Generalized Body Composition
Prediction Equation for Men Using Simple Measurement Techniques,
Medicine and Science in Sports and Exercise, 17 (1985), 189.

[39] Pintér, J.D., Global Optimization in Action, Kluwer Academic Publishers,
Dordrecht, 1996.

[40] Pintér, J.D., Optima, Mathematical Programming Society Newsletter, 52
(1996).

[41] Polak, E., Optimization: Algorithms and Consistent Approximations,
Springer, New York, 1997.

[42] Reed, H.S., and Holland, R.H., The Growth Rate of an Annual Plant
Helianthus, Proceedings of the National Academy of Sciences, 5 (1919), 135-
144.

[43] Schuster, E., and Allen, S., Raw Material Management at Welch’s Inc.,
Interfaces, 28 (1998), 13-24.

[44] Sharp, J., Snyder, J., and Green, H., A Decomposition Algorithm for
Solving the Multifacility Production Problem with Nonlinear Production
Costs, Econometrica, 38 (1970), 490-506.

394 Bibliography

[45] Straffin, P., Applications of Calculus, The Mathematical Association of
America, Washington D.C., 1996.

[46] Von Neumann, J., and Morgenstern, O., Theory of Games and Economic
Behavior, Third Edition, Princeton University Press, Princeton, 1980.

[47] Yamashita, N., Fukushima, M., On the Rate of Convergence of the
Levenberg-MarquardtMethod, Computing, (Supplement), 15 (2001), 239-
249.

[48] Zoutendijk, G., Nonlinear Programming, Computational Methods, in
Integer and Nonlinear Programming, Abadie, J., (Ed.), North Holland, Am-
sterdam, 1970.

Index

affine scaling, 74
affine scaling algorithm, 71
artificial variable, 50

basic feasible solution, 24
basic solution, 24
basic variables, 24
Big M Method, 51
bimatrix game, 300

application of bordered Hessian
test, 304

matrix form, 303
quadratic programming formu-

lation, 302
binding constraint, 39, 113, 270, 272,

285
Bland’s Rule, 45
blending problem, 4
Bolzano-Weierstrass Theorem, 238
bordered Hessian, 295

test, 296
branch and bound method, 151

backtracking, 158
branching, 152
candidate solution, 153
comparison with cutting plane

algorithm, 179
practicing with Maple, 158
tree diagram, 156

Cauchy Schwartz Inequality, 231
Cauchy-Schwartz Inequality, 348
Clairaut’s Theorem, 217
Cobb-Douglas Production Function,

187, 262
coefficient of determination, 209, 262
column space, 22

complementary slackness, 113, 272,
281

concave, 200
ConPro Manufacturing Company,

187, 205
ConPro problem

unconstrained, 223, 238
conservation constraints, 94
continuously differentiable, 193
continuously twice-differentiable, 217
contour, 14
contour diagram, 14
convex NLP, 279
convexity

at a point, 200
definition, 200
examples, 200
geometric interpretation, 200
strictly, 200

Cramer’s Rule, 349
critical point, 195
cutting plane algorithm, 174

Maple implementation, 176

Dantzig, G., 29
diagonalization, 218
diet problem, 85

Maple formulation, 86
differentiable, 192
directed arc, 97
directional derivative, 197, 231
dual simplex method, 108, 142, 174

Maple implementation, 147
ratio test, 144
used for sensitivity analysis, 145

duality, 107

395

396 Index

complementary slackness prop-
erty, 113

dual LP, 108
economic interpretation, 114
expanded form, 108
formulation for an arbitrary LP,

115
matrix inequality form, 108
primal LP, 108
Strong Duality Theorem, 111
Weak Duality Theorem, 109

elementary matrix, 58
excess variable, 50

feasible region, 14
floor function, 172
flow capacity, 97
Foraging Herbivore Model, 12, 19, 48,

83
fractional part, 173
free variables, 24
FuelPro LP, 6, 14, 21, 107
FuelPro Petroleum Company, 4

Global Optimal Solutions Theorem,
203, 221

Gomory, R., 172
gradient, 192

hemstiching, 244
Hessian, 216
hyperplane, 338

ill-conditioning, 248
import substitution, 95
integer component, 172
integer linear programming problem

binary linear programming prob-
lem, 159

Great Lakes Kayak Company
ILP, 149

mixed integer linear program-
ming problem, 159

solving with Maple, 160

traveling salesperson problem,
161

integer linear programming problem
(ILP), 149

interior point algorithm, 71
Maple implementation, 79
origin, 71
summary of steps, 77

Jacobian, 268
John,F., 270

Karmarkar, N., 71
Karush, W., 270
Karush-Kuhn-Tucker (KKT) point,

271
Karush-Kuhn-Tucker Theorem, 270
KKT Point

calculating with Maple, 281
knapsack problem, 168
Kuhn, H.W., 270

Lagrange multiplier, 271
interpretation, 273
vector, 271

Lagrangian function, 269
Newton direction, 310
restricted, 286

lattice points, 150
leading principal minor, 296
Lego Furniture Company, 12
level curve, 14
Levenberg Method, 255
Levenberg, K., 255
Levenberg-Marquardt Algorithm, 231,

255
damping parameter, 255
Maple implementation, 258
nonlinear regression, 261
quadratic convergence rate, 258
scaling factor, 257
summary of steps, 257
trial iterate, 256

linear classifier, 339
linear programming problem

Index 397

alternative optimal solutions, 8,
40

degenerate, 43
feasible region, 6
feasible solution, 6
general form, 6
infeasible, 8
matrix inequality form, 8, 107
optimal solution, 6
sign restrictions, 6
unbounded, 8
unbounded solutions, 41

linearization, 193, 201
Lipschitz constant, 237
Lipschitz continuous, 237, 249
Lipschitz Global Optimization, 263
lower level set, 210, 237

Maple
Determinant, 383
DiagonalMatrix, 381
Eigenvalues, 384
ExcelTools, 208, 342, 385
GlobalSolve, 263
Gradient, 193, 388
Hessian, 217, 389
IdentityMatrix, 380
IsDefinite, 224, 384
Jacobian, 269, 389
LPSolve, 7, 386
LPSolve-matrix form, 9, 386
Linear Algebra package com-

mands, 360
MatrixInverse, 384
Matrix, 359, 379
Mean, 343, 385
NLPSolve, 186, 387
Norm, 380
Pivot, 382
QPSolve, 298, 387
RowOperation, 381
Row, 381
UnitVector, 380
Variance, 343, 385
Vector, 378

ZeroMatrix, 380
add, 358, 378
array, 357, 376
contourplot, 14, 373
convert, 88, 188, 208
display, 367, 374
evalf, 353
for-do, 357
fsolve, 355
functions, 371
implicitplot, 184, 365, 373
inequal, 14, 367, 373
nops, 358, 377
ops, 377
op, 358
piecewise, 184, 371
plot3d, 363, 372
plot, 363, 372
pointplot3d, 366
pointplot, 366, 374
product, 378
seq, 87, 377
solve, 355
subs, 354
sum, 358, 378
unapply, 355, 372
basic programming structures,

375
classifying critical points, 224
lists, 377
procedures (proc), 376

Marquardt, D.W., 255
matrix game

bimatrix, 300
equilibrium mixed strategy, 117,

301
equilibrium pure strategy, 116
game value, 119
mixed strategy Nash equilib-

rium, 116, 120, 225, 301, 346
payoffmatrix, 116, 225
pure strategy, 116
pure strategy Nash equilibrium,

116, 300
saddle point, 227

398 Index

zero-sum, 116, 225
matrix norm, 238, 249, 350
maximum flow problem, 102

artificial arc, 103
mean, 342
Mean Value Theorem, 238
merit function, 321
minimum

global, 194
local, 194
strict local, 195

minimum cost network flow prob-
lem, 97

formulating and solving with
Maple, 99

Integrality Theorem, 98

n-Queens Problem, 168
Nash, J., 301
Newton’s Method, 231

convergence issues, 248
derivation, 244
Maple implementation, 247
Newton direction, 245
quadratic rate of convergence,

251, 314
role in sequential quadratic pro-

gramming, 309
summary of steps, 246

nodes, 97
nonbasic variables, 24
nonlinear programming problem

general form, 183
plotting feasible regions with

Maple, 184
null space, 22, 72
nullity, 22

open set, 192
optimal descent direction, 232
orthogonal matrix, 218
orthonormal, 218

Pam’s Pentathlon Problem, 190, 227
partitioned matrix, 55

constructed with Maple, 56

penalty function, 321, 340, 344
projected gradient, 73
projection matrix, 73

quadratic form
associated matrix, 212
classifying with eigenvalues, 215
definition, 212
indefinite, 214
negative definite, 214
negative semidefinite, 216
positive definite, 214
positive semidefinite, 216

quadratic programming, 292, 344
equality-type constraints, 292
inequality-type constraints, 297
matrix form, 292

quadratic subproblem, 311

rank, 22
Rank-Nullity Theorem, 22, 349
regression

multiple linear, 206
nonlinear, 261

regularity condition, 271
restricted Lagrangian, 286

saddle point, 287
row space, 22

saddle point, 219
saddle point criteria, 287, 288
Schur Complement, 293
second derivative test, 199, 206, 212,

216, 218
second-order differentiable, 216
sensitivity analysis, 109

performing with Maple, 137
sensitivity to a coefficient matrix

entry, 134
sensitivity to an objective coeffi-

cient, 125
sensitivity to constraint bounds,

129
Sequential Quadratic Programming

Technique (SQPT), 309
convergence issue, 314

Index 399

equality-type constraints, 309
improved version with merit

function (MSQPT), 320
inequality-type constraints, 315
Maple implementation, 318
summary of steps, 311

shadow price, 132, 274
shortest path problem, 100
simplex algorithm, 20, 29

cycling, 45
Maple implementation, 34
overview, 30
via partitioned matrix multipli-

cation, 57, 61
sink, 97
skew-symmetric matrix, 123
slack variables, 21
source, 97
special cases, 40
spectral norm, 238, 350
spectral radius, 238, 350
Spectral Theorem, 218, 349
Steepest Descent Method, 231

convergence conditions, 237
linear rate of convergence, 241
Maple implementation, 235
rate of convergence, 240
summary of steps, 234

subtour, 163
Sudoku, 169
sum of squared-errors, 207, 261, 262
symmetric matrix, 212

tableau matrix, 57
tour, 161
training vectors, 338
transportation problem, 90

as a minimum cost network flow
problem, 98

balanced, 90
integrality of solution, 91, 93
with transshipment, 93

Tucker, W., 270
twice-differentiable, 216

unrestricted in sign, 115, 271

variance, 342
von Neumann Minimax Theorem,

227

Zoutendijk, G., 237

